MAT341E Theory of Complex Functions Worksheet 2 1. Sketch the region onto which sector r 1 , 0 4 31 October 2007 Beycan Kahraman 040020337 is mapped by the transformation a) w z 2 z re i b) w z 3 z re i c) w z 4 z re i w r 2 e 2i e i w r 3 e 3i e i w r 4 e 4i e i r2 r 3 3 r 4 4 2 2. Show that when w z 2 , the image of the closed triangular region formed by the lines y x and x 1 is the closed parabolic region bounded on the left by the segment 2 v 2 of the v axis and on the right by a portion of the parabola v 2 4(u 1) . Verify the corresponding points on the two boundaries shown in figure ( A, B, C , D and A' , B ' , C ' , D ' ). w u iv z 2 ( x iy ) 2 ( x 2 y 2 ) 2ixy u x2 y2 v 2 xy ux x 0 v 2 xy 2 x 2 0 x 1 AB line: y x, 0 v 2, u0 u x2 x2 0 BC line: x 1, 1 y 1 v 2 xy 2 x 2 0 v 2, u0 v 2y v 2 4(u 1) AC line: y x, 2 0 x 1 2 u 12 y 2 Point A(0, 0): Point C(1, 1): u 0 u 0 v0 v2 Point B(1, -1): u 0 Point D(1, 0): u 1 v 2 v0 3. Show that f ' ( z ) does not exist at any point when a) f ( z ) z b) f ( z ) Re z z x iy u ( x, y ) x v ( x, y ) 0 u x 1, vy 0 f ( z ) u ( x, y ) iv ( x, y ) x iy u ( x, y ) x v ( x, y ) y Couchy-Riemann conditions are ux vy v x u y Necessary for being differentiable. u x 1, v y 1 f ' ( z ) does not exist in any point. c) f ( z ) Im z u ( x, y ) 0 v ( x, y ) y u x 0, vy 1 f ' ( z ) does not exist in any point. f ' ( z ) does not exist. 4. Show that f ' ( z ) and its derivative f ' ' ( z ) exist everywhere and find f ' ' ( z ) when a) f ( z ) iz 2 b) f ( z ) e x e iy u ( x, y ) 2 y v ( x, y ) x u( x, y) e x cos y v( x, y) e x sin y ux vy 0 v x u y 1 u x v y e x cos y v x u y e x sin y f ' ( z ) exists everywhere. f ' ( z ) exists everywhere. f ' ( z ) u x iv x i s it f ' ( z ) u x iv x e x cos y ie x sin y s ( x, y ) 0 t ( x, y ) 1 s( x, y) e x cos y t ( x, y) e x sin y sx t y 0 s y t x 0 s x t y e x cos y s y t x e x sin y f ' ' ( z ) exists everywhere. f ' ' ( z ) exists everywhere. f ' ' ( z ) s x it x 0 f ' ' ( z ) s x it x e x cos y ie x sin y c) f ( z ) z 3 u( x, y) x 3 3xy 2 v( x, y) 3x y y 2 u x v y 3x 3 y v x u y 6 xy f ' ( z ) exists everywhere. f ' ( z ) u x iv x 3x 2 3 y 2 6ixy 2 2 s( x, y) 3x 2 3 y 2 t ( x, y) 6 xy s x t y 6 x s y t x 6 y f ' ' ( z ) exists everywhere. f ' ' ( z ) s x it x 6 x 6iy 3 d) f ( z ) cos x. cosh y i sin x. sinh y u ( x, y ) cos x. cosh y v( x, y ) sin x. sinh y u x v y sin x. cosh y v x u y cos x. sinh y f ' ( z ) exists everywhere. f ' ( z ) u x iv x sin x. cosh y i cos x. sinh y s ( x, y ) sin x. cosh y t ( x, y ) cos x. sinh y s x t y cos x. cosh y s y t x sin x. sinh y f ' ' ( z ) exists everywhere. f ' ' ( z ) s x it x cos x. cosh y i sin x. sinh y
© Copyright 2026 Paperzz