058:0160
Jianming Yang
Fall 2012
Chapter 7
1
Chapter 7: Flow Past Immersed Bodies
Boundary layer flows: External flows around streamlined bodies at high Re have viscous
(shear and no-slip) effects confined close to the body surfaces and its wake, but are
nearly inviscid far from the body.
Bluff body flows: Separation.
058:0160
Jianming Yang
Fall 2012
Chapter 7
2
1 Flat-Plate Momentum Integral Analysis & Laminar approximate solution
Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat plate fixed in a
uniform stream of velocity ๐.
Boundary-layer thickness arbitrarily defined by ๐ฆ = ๐ฟ99% , where ๐ข = 0.99๐.
Streamlines outside ๐ฟ99% will deflect an amount ๐ฟ โ (the displacement thickness). Thus
the streamlines move outward from ๐ฆ = โ at ๐ฅ = 0 to ๐ฆ = ๐ฟ = โ + ๐ฟ โ at ๐ฅ = ๐ฅ1 .
058:0160
Jianming Yang
Chapter 7
3
Fall 2012
Conservation of mass:
โ
โซ0 ๐๐
โ ๐ง๐๐๐ฆ = 0 =
โ
โ โซ0 ๐๐๐๐๐ฆ
+
โ+๐ฟ โ
๐๐ข๐๐๐ฆ
โซ0
Assuming incompressible flow (constant density), this relation simplifies to
๐โ =
โ+๐ฟ โ
(๐
โซ0
+ ๐ข โ ๐)๐๐ฆ = ๐(โ + ๐ฟ
โ)
โ+๐ฟ โ
(๐ข
+ โซ0
โ ๐)๐๐ฆ
We get the definition of displacement thickness:
โ
๐ฟ =
โ+๐ฟ โ ๐โ๐ข
(
) ๐๐ฆ
โซ0
๐
=
โ+๐ฟ โ
(1
โซ0
๐ข
โ ) ๐๐ฆ
๐
๐ฟ โ ( a function of ๐ฅ only) is an important measure of effect of BL on external flow.
Conservation of x-momentum:
โ ๐น๐ฅ = โ๐ท =
โ
โซ0 ๐๐ข๐
2
๐ท = ๐๐๐ โ โ
โ ๐ง๐๐๐ฆ =
โ
โ โซ0 ๐๐๐๐๐๐ฆ
โ+๐ฟ โ 2
๐๐ โซ0
๐ข ๐๐ฆ
+
โ+๐ฟ โ
๐๐ข๐ข๐๐๐ฆ
โซ0
Fluid force on plate
โ+๐ฟ โ ๐ข
Again assuming constant density and using continuity: โ = โซ0
๐๐ฆ
๐
โ
โ
โ+๐ฟ โ 2
๐ข
2 โ+๐ฟ ๐ข
2 โ+๐ฟ ๐ข
๐ท = ๐๐๐ โซ0
๐๐ฆ โ ๐๐ โซ0
๐ข ๐๐ฆ = ๐๐๐ โซ0
(1 โ ) ๐๐ฆ
๐
๐
๐
โ+๐ฟ โ ๐ข
๐ท
๐ข
=
๐
=
(1
โ
) ๐๐ฆ
โซ
0
๐๐๐ 2
๐
๐
๐ฅ
= โซ0 ๐๐ค ๐๐๐ฅ
๐ is the momentum thickness (a function of ๐ฅ only), an important measure of the drag.
058:0160
Jianming Yang
Chapter 7
4
Fall 2012
๐ถ๐ท = 1
๐ท
2
2๐๐๐ ๐ฅ
=
2๐
๐ฅ
๐ถ๐ =
1
๐ฅ
= โซ0
๐ฅ
๐
๐๐ค
2
(๐ฅ๐ถ๐ท ) = 2
๐๐ฅ
๐๐
๐๐ฅ
๐๐ค =
=
1
๐ฅ
๐๐๐ฅ = โซ0 ๐ถ๐ ๐๐ฅ
1
๐ฅ
๐๐๐2
๐๐
๐๐ฅ
๐ถ๐
2
๐๐
๐๐ 2
๐๐ฅ
Special case: 2D momentum integral equation for ๐๐ฅ = 0
058:0160
Jianming Yang
Chapter 7
5
Fall 2012
Simple velocity profile approximations: ๐ข = ๐ (
๐ข(0) = 0
๐ข(๐ฟ) = ๐
B.C.:
๐๐ข
๐๐ฆ
2๐ฆ
๐ฟ
โ
๐ฆ2
๐ฟ2
)
no slip
matching with outer flow
(๐ฆ = ๐ฟ ) = 0
Use velocity profile to get ๐ถ๐ (๐ฟ ) and ๐(๐ฟ ) and then integrate momentum integral
equation to get ๐ฟ (๐
๐๐ฅ )
โ
๐ฟ =
๐=
=
โ+๐ฟ โ
(1
โซ0
๐ฟ 2๐ฆ
โซ0 ( ๐ฟ
๐ฟ๐๐ฟ =
๐ฅ
โ ) ๐๐ฆ =
๐
โ+๐ฟ โ ๐ข
(1
โซ0
๐
๐๐ค = ๐
๐ฟ
๐ข
โ
๐๐ข
โ ) ๐๐ฆ =
๐
๐ฆ2
4๐ฆ 2
๐ฟ
๐ฟ2
2 โ
|
๐๐ฆ ๐ฆ=0
15๐
๐๐
๐ข
=๐
โ1โ2
๐ถ๐ท (๐ฅ = ๐ฟ) =
+
2๐ฆ 3
๐ฟ3
๐ฅ
2๐
๐ฟ
+
2๐ฆ 3
๐ฟ3
2๐ฆ
๐ฟ
โ
โ
๐ถ๐ = 1
+
๐ฆ2
๐ฟ2
=
30๐
๐๐
1๐ฟ
3๐ฅ
๐ฆ2
๐ฆ2
๐ฟ
๐ฟ
2 ) ๐๐ฆ = (๐ฆ โ
) (1 โ
2๐ฆ
+
๐ฟ
๐ฆ4
๐ฆ2
๐ฟ
๐๐ค
๐ฟ
4 ) ๐๐ฆ = (
2
2๐๐
๐ฟ
๐ฟโ
โ
๐ฟ 2๐ฆ
โซ0 ( ๐ฟ
2๐
๐ฟ2 =
๐๐ฅ
= โ30๐
๐๐ฅ
๐ฟ
โซ0 (1
๐ฅ = 30
=
๐
๐๐๐ฅ
4๐
๐๐๐ฟ
=2
๐ฅ2 =
โ 1.83๐
๐๐ฅ โ1โ2
โ
๐ฆ2
๐ฟ2
3๐ฟ
๐๐
30
๐ฅ
3๐ฟ
0
1
2 )| = ๐ฟ
๐ฆ4
๐ฆ5
๐ฟ
4 ๐๐ฟ
5๐ฟ
2 +
=
๐ฅ2
๐
๐๐ฅ
๐
2 ๐ฟ
=
๐ฟ
3
) ๐๐ฆ
5๐ฆ 3
๐๐ฅ
+
๐ฆ3
15 ๐ฅ
3 โ
๐ฟ
4 )| =
0
2
15
๐ฟ
15 ๐๐ฅ
๐
๐๐ฅ =
๐๐๐ฅ
๐
โ 0.73๐
๐๐ฅ โ1โ2
โ 1.46๐
๐๐ฟ โ1โ2 theses estimates are 6% away from the exact solution.
058:0160
Jianming Yang
Chapter 7
6
Fall 2012
2 Boundary layer approximations, equations and comments
2D steady Navier-Stokes equation, ๐ = const., neglect ๐
๐๐ข
๐๐ฃ
+
=0
๐๐ฅ
๐๐ฆ
๐๐ข
๐๐ข
๐ข
๐ข
๐๐ฅ
๐๐ฃ
๐๐ฅ
+๐ฃ
+๐ฃ
๐๐ฆ
๐๐ฃ
๐๐ฆ
=โ
=โ
1 ๐๐
๐ ๐๐ฅ
1 ๐๐
๐ ๐๐ฆ
+๐(
+๐(
๐2 ๐ข
๐๐ฅ 2
๐2 ๐ฃ
๐๐ฅ 2
+
+
๐2 ๐ข
๐๐ฆ 2
๐2 ๐ฃ
๐๐ฆ 2
)
)
Introduce non-dimensional variables that includes scales so all variables are of ๐(1):
๐
๐ =
๐๐ฟ
๐
๐ฅ
๐ฆ
๐ข
๐ฃ
, ๐ฅ โ = , ๐ฆ โ = โ๐
๐, ๐ขโ = , ๐ฃ โ = โ๐
๐, ๐โ =
๐ฟ
๐ฟ
๐
๐
๐โ๐0
๐๐ 2
The NS equations become
๐๐ขโ
1
๐
๐
+
๐๐ฃ โ
=0
๐๐ฅ โ
๐๐ฆ โ
โ
โ
โ ๐๐ข
โ ๐๐ข
๐ข
+๐ฃ
๐๐ฅ โ
๐๐ฆ โ
โ
โ
โ ๐๐ฃ
โ ๐๐ฃ
(๐ข
๐๐ฅ โ
+๐ฃ
๐๐ฆ โ
=โ
)=โ
๐๐
๐๐ฅ โ
๐๐
๐๐ฆ โ
+
+
1 ๐ 2 ๐ขโ
๐
๐ ๐๐ฅ โ 2
1 ๐2 ๐ฃ โ
๐
๐ 2 ๐๐ฅ โ 2
+
+
๐ 2 ๐ขโ
๐๐ฆ โ 2
1 ๐2 ๐ฃ โ
๐
๐ ๐๐ฆ โ 2
For large Re (BL assumptions) the red terms drop out and the BL equations are obtained.
Therefore, y-momentum equation reduces to ๐๐โ๐๐ฆ = 0, i.e., ๐ = ๐(๐ฅ, ๐ก)
External flow is presumed to be known and irrotational, then from the Bernoulli equqtion
๐ + 12๐๐๐2 = const. โ ๐๐โ๐๐ฅ = โ๐๐๐ ๐๐๐ โ๐๐ฅ
058:0160
Jianming Yang
Chapter 7
7
Fall 2012
2D Boundary Layer equations:
๐๐ข
๐๐ฃ
+
=0
๐๐ฅ
๐๐ฆ
๐๐ข
๐๐ข
๐ข
๐๐ฅ
+๐ฃ
๐๐ฆ
= ๐๐
๐๐๐
๐๐ฅ
+๐
๐2 ๐ข
๐๐ฆ 2
Note:
(1) ๐(๐ฅ, ๐ฆ), ๐(๐ฅ, ๐ฆ) imposed on BL by the external flow.
๐2
(2)
= 0, i.e. streamwise diffusion is neglected.
๐๐ฅ 2
(3) Due to (2), the equations are parabolic in ๐ฅ. Physically, this means all downstream
influences are lost other than that contained in external flow. A marching solution
is possible.
matching
(4) Boundary conditions
inlet
ฮด
No slip: ๐ข(๐ฅ, ๐ฆ = 0) = ๐ฃ (๐ฅ, ๐ฆ = 0) = 0
Solution by
Inlet condition: ๐ข(๐ฅ0 , ๐ฆ) given at ๐ฅ0
marching
y
(
)
Matching condition: ๐ข ๐ฅ, ๐ฆ = โ = ๐(๐ฅ)
x
(5) When applying the boundary layer equations
X0
one must keep in mind the restrictions
No slip
imposed on them due to the basic BL
assumptions. Therefore they are not applicable for thick BL or separated flows
(although they can be used to estimate occurrence of separation).
058:0160
Jianming Yang
Chapter 7
8
Fall 2012
(6) Curvilinear coordinates
Although BL equations have been
written in Cartesian coordinates, they apply
to curved surfaces provided ๐ฟ โช ๐
and ๐ฅ, ๐ฆ
are curvilinear coordinates measured along
and normal to the surface, respectively. In
such a system we would find under the BL
assumptions: ๐๐โ๐๐ฆ = ๐๐ข2 โ๐
. Assume ๐ข
is a linear function of ๐ฆ: ๐ข = ๐๐ฆโ๐ฟ :
๐๐
๐๐ฆ
=
๐๐ 2 ๐ฆ 2
๐
๐ฟ 2
โ
๐(๐ฟ ) โ ๐(0) โ
๐๐ 2 ๐ฟ
3๐
or
โ๐
๐๐ 2
โ
๐ฟ
3๐
therefore, we require ๐ฟ โช ๐
(7) Practical use of the BL theory
For a given body geometry:
(a) Inviscid theory gives ๐(๐ฅ) โ integration gives ๐ฟ, ๐ท = 0
(b) BL theory gives โ ๐ฟ โ (๐ฅ ), ๐๐ค (๐ฅ ), ๐(๐ฅ ),etc. and predicts separation if any
(c) If separation present then no further information โ must use inviscid models,
BL equation in inverse mode, or NS equation.
(d) If separation is absent, integration of ๐๐ค (๐ฅ ) โ frictional resistance body + ๐ฟ โ ,
inviscid theory gives โ ๐(๐ฅ), can go back to (2) for more accurate BL
calculation including viscous โ inviscid interaction
058:0160
Jianming Yang
Chapter 7
9
Fall 2012
(8) Separation and shear stress
At the wall, ๐ข = ๐ฃ = 0 โ
๐2 ๐ข
๐๐ฆ 2
=
1 ๐๐
๐ ๐๐ฅ
๐๐ข
1st derivative ๐ข gives ๐๐ค โ ๐๐ค = ๐
2nd derivative ๐ข depends on
๐๐
๐๐ฅ
๐๐ฆ
, ๐๐ค = 0: separation
058:0160
Jianming Yang
Chapter 7
10
Fall 2012
3 Laminar Boundary Layer - Similarity Solution
2D, steady, incompressible: method of reducing PDE to ODE by appropriate similarity
transformation
๐๐ข
+
๐๐ฃ
=0
๐๐ฅ
๐๐ฆ
๐๐ข
๐๐ข
๐ข
๐๐ฅ
+๐ฃ
๐๐ฆ
=๐
๐๐
๐๐ฅ
+๐
๐2 ๐ข
๐๐ฆ 2
BC:
No slip: ๐ข(๐ฅ, ๐ฆ = 0) = ๐ฃ (๐ฅ, ๐ฆ = 0) = 0
Matching condition: ๐ข(๐ฅ, ๐ฆ = ๐ฟ (๐ฅ )) = ๐(๐ฅ)
Inlet condition: ๐ข(๐ฅ0 , ๐ฆ) given at ๐ฅ0
For Similarity
๐ข(๐ฅ,๐ฆ)
๐(๐ฅ)
= ๐(
๐ฆ
)
๐(๐ฅ)
expect ๐(๐ฅ )related to ๐ฟ (๐ฅ )
Or in terms of stream function ๐น: ๐ข =
For similarity ๐น = ๐(๐ฅ )๐(๐ฅ )๐(๐ )
๐ข=
๐๐น
๐๐ฆ
,๐ฃ = โ
๐=
๐๐ฅ
= โ(
๐๐
๐๐ฅ
๐๐ + ๐
๐๐
๐๐ฅ
๐ โ ๐๐ โฒ
๐๐
๐๐ฅ
๐๐น
๐๐ฅ
๐ฆ
๐(๐ฅ)
= ๐๐ โฒ
๐๐ฆ
๐๐น
๐ฃ=โ
๐๐น
๐)
058:0160
Jianming Yang
Chapter 7
11
Fall 2012
๐ข(๐ฅ, ๐ฆ = 0) = 0
BC:
๐(๐ฅ )๐ โฒ (0) = 0
โ
๐ฃ (๐ฅ, ๐ฆ = 0) = 0 โ โ (
๐๐
โ
๐๐ฅ
๐๐
๐๐ฅ
๐ โฒ (0) = 0
โ
๐(๐ฅ )๐ (0) + ๐(๐ฅ )
๐(๐ฅ )๐ (0) + ๐(๐ฅ )
๐๐
๐๐ฅ
๐๐
๐๐ฅ
๐(0) โ ๐(๐ฅ )๐ โฒ
๐ (0) = 0
๐ข(๐ฅ, ๐ฆ = โ) = ๐(๐ฅ ) โ ๐(๐ฅ )๐ โฒ (โ) = ๐(๐ฅ )
Write boundary layer equations in terms of ๐น
๐๐ข
๐ข
๐๐ฅ
+๐ฃ
๐๐ข
๐๐ฆ
=๐
๐๐
+๐
๐๐ฅ
๐2 ๐ข
๐๐น ๐2 ๐น
โ
๐๐ฆ 2
๐๐ฆ ๐๐ฆ๐๐ฅ
โ
๐๐ฅ ๐๐ฆ๐๐ฆ
๐๐ฅ
0) = 0
๐(0) = 0
โ
๐ โฒ (โ) = 1
โ
๐๐น ๐2 ๐น
๐๐
=๐
๐๐
๐๐ฅ
+๐
๐3 ๐น
๐๐ฆ๐๐ฆ๐๐ฆ
Substitute
๐2 ๐น
๐๐ฆ๐๐ฆ
= ๐๐
โฒโฒ โ
๐
๐3 ๐น
๐๐ฆ๐๐ฆ๐๐ฆ
= ๐๐
๐2 ๐น
โฒโฒโฒ โ 2
๐
๐๐ฆ๐๐ฅ
=
๐๐
๐๐ฅ
๐ โฒ โ ๐๐ โฒโฒ ๐
๐๐
๐๐ฅ
โ๐
Assemble them together:
๐๐ โฒ
๐๐ ๐
๐๐
๐๐
๐๐
๐๐โฒโฒ
โฒ
โฒโฒ
โฒ
(๐๐ ) ( ๐ โ ๐๐
) โ ( ๐๐ + ๐ ๐ โ ๐๐
๐) (
)
๐๐ฅ
๐๐ฅ ๐
๐๐ฅ
๐๐ฅ
๐๐ฅ
๐
๐๐
๐๐
๐๐ 1
๐๐
1
2
๐ ๐ โฒ โ ๐ ๐๐ โฒโฒ โ ๐ 2 ๐๐ โฒโฒ
= ๐ + ๐๐๐ โฒโฒโฒ 2
๐๐ฅ
๐๐ฅ
๐๐ฅ ๐
๐๐ฅ
๐
๐๐ โฒ 2
๐ ๐ (๐๐)
๐๐
โฒโฒ
โฒโฒโฒ 1
๐
๐
๐๐ฅ
โฒโฒโฒ
๐
+
โ
๐ ๐๐ฅ
๐ ๐ (๐๐)
๐๐ โฒโฒ
๐ ๐๐ฅ
๐๐ = ๐
+
๐2 ๐๐
๐ ๐๐ฅ
๐๐ฅ
+ ๐๐๐
2
=๐
๐๐
๐๐ฅ
+๐(
๐๐โฒโฒโฒ
๐2
)
๐2
(1 โ ๐ โฒ ) = 0
or
2
๐ โฒโฒโฒ + ๐ถ1 ๐๐ โฒโฒ + ๐ถ2 (1 โ ๐ โฒ ) = 0
Where for similarity ๐ถ1 and ๐ถ2 are constants or functions of ๐ only.
058:0160
Jianming Yang
Chapter 7
12
Fall 2012
The Blasius Solution for Flat-Plate Flow
๐ = const.
๐ถ1 =
๐ ๐ (๐๐)
๐
๐๐ฅ
โ
=
๐๐
=0
๐๐ฅ
2
๐ ๐๐
๐ ๐๐
๐ ๐๐ฅ
1
+
๐ ๐๐ฅ
โ
๐=
๐ ๐๐
๐ ๐๐ฅ
๐ถ2 =
๐
=0
๐ ๐๐ฅ
2
๐(๐ )
2๐ถ1 ๐
For simplicity, let ๐ถ1 = , then ๐(๐ฅ ) = โ๐๐ฅ โ๐
2
Blasius equations for Flat Plate Boundary Layer
1
๐2 ๐๐
๐๐ฅ
=
๐
โ ๐(๐ฅ ) = (
2๐ถ1 ๐๐ฅ 1โ2
๐
)
๐ = ๐ฆโ๐โ(๐๐ฅ )
๐ โฒโฒโฒ + ๐๐ โฒโฒ = 0
2
โฒ
๐(0) = ๐ (0) = 0 ๐ โฒ (โ) = 1
Third-order nonlinear ODE for ๐, solution can be obtained from numerical integration.
058:0160
Jianming Yang
๐ข
๐
Chapter 7
13
Fall 2012
= 0.99 when ๐ = ๐ฆโ
๐
๐๐ฅ
โ 5.0
๐ฟ
๐ฅ
โ
๐ฟ =
โ
โซ0 (1
โ๐ข
๐ = โซ0
๐
๐ข
โ ) ๐๐ฆ =
๐
๐ฟ
โซ0 (1
=
๐ฆ
๐ฅ
๐ฆ
๐ฅ
โฒ)
๐๐ฅ
โ
โ
๐
โ 5.0 ๐
๐๐ฅ =
5.0
โ๐
๐๐ฅ
โ ๐ ๐ (๐โ )
โ
๐
๐๐ฅ
(1 โ ) ๐๐ฆ = โซ0 ๐ โฒ (1 โ ๐ โฒ )๐ (๐โ )
๐
๐
(Blasius, 1908)
๐๐ฅ
๐ฟ
๐ข
๐๐ฅ
๐
โ
๐ฟโ
๐ฅ
๐
๐ฅ
โ
โ
1.721
โ๐
๐๐ฅ
0.664
โ๐
๐๐ฅ
The ratio of displacement to momentum thickness,
๐ป = ๐ฟ โ โ๐ =
1.721
0.664
= 2.59
which is called the dimensionless-profile shape factor A large shape factor implies that
boundary layer is about to separate.
๐๐ค = ๐
๐ถ๐ = 1
๐๐ข
|
=๐
๐๐ฆ ๐ฆ=0
๐๐ค
0.664
2
2๐๐
๐ถ๐ท = 1
โ
๐ท
2
2๐๐๐ ๐ฅ
๐ฃ=
๐๐
๐๐ โฒ
๐๐ฅ
โ๐
๐๐ฅ
=
โ
2๐
๐ฅ
๐๐
๐๐ฅ
๐๐โฒโฒ (0)
โ๐๐ฅโ๐
=
๐
๐ฅ
= 2๐ถ๐ โ
๐=
๐๐โฒ โ๐
โ2๐
๐๐ฅ
1.328
โ๐
๐๐ฅ
โช1
for ๐
๐๐ฅ โซ 1
๐(๐ฅ ) = โ๐๐ฅ โ๐
058:0160
Jianming Yang
Chapter 7
14
Fall 2012
4 Momentum Integral Equation
Exact solutions of the boundary-layer equations are possible only in simple cases. In
more complicated problems, approximate methods satisfy only an integral of the
boundary-layer equations across the layer thickness. When this integration is performed,
the resulting ordinary differential equation involves the boundary layerโs displacement
and momentum thicknesses, and its wall shear stress.
4.1 Momentum integral equation
๐ข
Momentum equation:
๐๐ข
๐๐ฅ
+๐ฃ
๐๐ข
๐๐ฆ
=โ
1 ๐๐
๐ ๐๐ฅ
1 ๐๐
+
๐ ๐๐ฆ
The pressure gradient is evaluated form the outer potential flow using Bernoulli equation
๐ + 12๐๐ 2 = const.
๐ข
๐๐ข
๐๐ฅ
+๐ฃ
๐๐ข
(๐ข โ ๐) (
(๐ข
โ
๐๐ข
+๐ฃ
๐๐ฅ
1 ๐๐
๐ ๐๐ฆ
โ๐
๐๐ฆ
๐๐ข
๐๐ฅ
๐๐ข
๐๐ฆ
+
๐๐ฅ
๐๐ฃ
๐๐ฆ
โ๐
= โ2๐ข
=
๐๐
๐
๐๐ฅ
๐๐ข
๐๐ฅ
โ
1 ๐๐
๐ ๐๐ฆ
๐๐ข
)=๐ข
๐๐
๐๐ฅ
โ
โ๐ฃ
= โ๐๐
๐๐ฅ
๐๐
๐๐ฅ
=0
+๐ข
๐๐ฅ
1 ๐๐
๐ ๐๐ฆ
๐๐ข
๐๐ฆ
๐๐
โ
๐๐ฃ
๐๐ฆ
โ๐
) + (๐ข
+๐
๐๐
๐๐ฅ
๐๐ข
๐๐ข
๐๐ฅ
+๐ข
๐๐ฅ
๐๐ฃ
โ๐ข
(๐ข๐ โ ๐ข2 ) + (๐ โ ๐ข)
๐๐ฆ
๐๐
๐๐ฅ
โ๐
๐๐ฃ
+
๐๐ฆ
โ๐
๐๐ฆ
+๐
๐๐ฃ
๐๐ข
๐๐ฅ
๐
๐๐ฆ
=0
๐๐ข
๐๐ฅ
+๐
โ๐
๐๐ฃ
๐๐ฆ
(๐ฃ๐ โ ๐ฃ๐ข)
๐๐ฃ
๐๐ฆ
)=0
058:0160
Jianming Yang
โ
Chapter 7
15
Fall 2012
1 ๐๐
1
โซ0 โ ๐ ๐๐ฆ ๐๐ฆ = โ ๐ (๐โ โ ๐๐ค ) =
=
=
โ
๐
๐๐
๐๐ค
๐
โ
โ ๐
โซ ๐ข(๐ โ ๐ข)๐๐ฆ + ๐๐ฅ โซ0 (๐ โ ๐ข)๐๐ฆ + โซ0
๐๐ฅ 0
โ
๐
๐๐
๐๐ฆ
(๐ฃ๐ โ ๐ฃ๐ข)๐๐ฆ
โ
โ
(
)
(
)
(
)|
๐ข
๐
โ
๐ข
๐๐ฆ
+
๐
โ
๐ข
๐๐ฆ
+
๐ฃ๐
โ
๐ฃ๐ข
โซ
โซ
0
๐๐ฅ 0
๐๐ฅ 0
๐๐ค
๐
๐๐ค
๐
๐๐ค
๐
=
=
=
โ
โซ ๐ข(๐
๐๐ฅ 0
๐
โ ๐ข)๐๐ฆ +
โ๐ข
๐
๐๐ฅ
๐
๐๐ฅ
[๐ 2 โซ0
๐
๐ข
โ
โซ (๐
๐๐ฅ 0
๐๐
๐๐
(1 โ ) ๐๐ฆ] +
(๐ 2 ๐) + ๐๐ฟ
๐
โ ๐๐
๐๐ฅ
โ ๐ข)๐๐ฆ
โ
๐ข
๐ โซ0 (1 โ ) ๐๐ฆ
๐
๐๐ฅ
von Karman boundary-layer momentum integral equation, which is valid for steady
laminar boundary layers and for time-averaged flow in turbulent boundary layers. It is a
single ordinary differential equation that relates three unknowns ๐, ๐ฟ โ , and ๐๐ค , so
additional assumptions must be made or correlations provided to obtain solutions for
these parameters.
๐๐ค
๐
๐๐ค
= ๐2
๐๐ 2
๐๐ค
๐๐ 2
=
=
๐ถ๐
2
๐ถ๐
2
๐๐
๐๐ฅ
=
=
+ 2๐๐
๐๐
๐๐ฅ
๐๐
๐๐ฅ
๐๐
๐๐ฅ
+ ๐๐ฟ โ
+ (2 +
๐๐
๐๐ฅ
๐ฟ โ ๐ ๐๐
๐
)
+ (2 + ๐ป )
๐ ๐๐ฅ
๐ ๐๐
๐ ๐๐ฅ
= ๐2
๐๐
๐๐ฅ
๐ป=
+ ๐(2๐ + ๐ฟ โ )
๐ฟโ
๐
๐๐
๐๐ฅ
058:0160
Jianming Yang
Chapter 7
16
Fall 2012
Historically two approaches for solving the momentum integral equation for specified
potential flow ๐(๐ฅ):
1. Guessed Profiles
2. Empirical Correlations
Best approach is to use empirical correlations to get integral parameters (๐ฟ, ๐ฟ โ , ๐, ๐ป, ๐ถ๐ ,
๐ถ๐ท ) after which use these to get velocity profile ๐ข/๐.
4.2 Thwaites Method
Multiply momentum integral equation by
๐๐ค
๐
=
๐
๐๐ฅ
๐๐
๐๐ฟ โ
๐๐ฅ
2
(๐ ๐) +
๐๐ค ๐
โ
๐๐
๐
๐๐
=
๐๐ ๐๐
๐ ๐๐ฅ
+
๐ 2 ๐๐
๐ ๐๐ฅ
(2 + ๐ป )
LHS and ๐ป are dimensionless and can be correlated with pressure gradient parameter ๐ =
๐ 2 ๐๐
๐ ๐๐ฅ
as shear and shape-factor correlations
๐๐ ๐๐
Note
๐ ๐๐ฅ
1
๐
2
๐๐ฅ
= ๐
๐2
( )
๐
Substitute above into momentum integral equation
1
๐
2
๐๐ฅ
๐(๐) = ๐
๐2
( ) + ๐(2 + ๐ป(๐))
๐
2[๐(๐) โ (2 + ๐ป(๐))๐] = ๐
๐
๐๐ฅ
๐2
( )
๐
058:0160
Jianming Yang
Chapter 7
17
Fall 2012
2[๐(๐) โ (2 + ๐ป(๐))๐] = ๐
๐
๐
)
๐๐ฅ ๐๐โ๐๐ฅ
(
= ๐น (๐)
๐น (๐) = 0.45 โ 6๐ based on AFD and EFD
Define ๐ง =
๐
๐
๐๐ง
๐๐ฅ
๐๐ง
๐๐ฅ
6
๐2
๐
so that ๐ = ๐ง
๐๐
๐๐ฅ
= 0.45 โ 6๐ = 0.45 โ 6๐ง
+ 6๐ง
๐๐
๐๐ฅ
๐๐
๐๐ฅ
1 ๐
= 0.45
๐ 5 ๐๐ฅ
๐ฅ
(๐ง๐ 6 ) = 0.45
๐ง๐ = 0.45 โซ0 ๐ 5 ๐๐ฅ + ๐ถ
๐ 2 = ๐02 +
๐ฅ 5
โซ ๐ ๐๐ฅ
๐6 0
0.45๐
๐0 (๐ฅ = 0) = 0 and ๐(๐ฅ) from potential flow solution
Complete solution:
๐ = ๐(๐) =
๐ 2 ๐๐
๐ ๐๐ฅ
,
๐๐ค ๐
๐๐
= ๐(๐) , ๐ฟ โ = ๐๐ป(๐)
Thwaites (1949), ๐ = โ๐
Overall, the accuracy of Thwaitesโ method is ±3% or so for favorable pressure gradients,
and ±10% for adverse pressure gradients but perhaps slightly worse near boundary-layer
separation. The great strength of Thwaitesโ method is that it involves only one parameter
(ฮป) and requires only a single integration. This simplicity makes it ideal for preliminary
engineering calculations that are likely to be followed by more formal computations or
experiments.
058:0160
Jianming Yang
Fall 2012
Chapter 7
18
058:0160
Jianming Yang
Fall 2012
Chapter 7
19
058:0160
Jianming Yang
Chapter 7
20
Fall 2012
๐ฆ
๐ฆ3
๐ฟ
๐ฟ3
๐ข = ๐ (2 โ 2
+
๐ฆ4
๐ฟ4
)
๐ข(0) = 0 no slip
๐ข(๐ฟ) = ๐ matching with outer flow
B.C.:
๐ฟ
โ
3
4
2
4
5
โ+๐ฟ
๐ฟ
๐ข
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
3
๐ฟ โ = โซ0
(1 โ ) ๐๐ฆ = โซ0 (1 โ 2 + 2 3 โ 4 ) ๐๐ฆ = (๐ฆ โ + 3 โ 4)| = ๐ฟ
๐
๐ฟ
๐ฟ
๐ฟ
๐ฟ
2๐ฟ
5๐ฟ
10
0
โ
3
4
3
4
โ+๐ฟ ๐ข
๐ฟ
๐ข
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ = โซ0
(1 โ ) ๐๐ฆ = โซ0 (2 โ 2 3 + 4 ) (1 โ 2 + 2 3 โ 4 ) ๐๐ฆ
๐
๐
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
3
4
2
4
5
4
6
7
๐ฟ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ5
๐ฆ7
๐ฆ8
= โซ0 (2 โ 2 3 + 4 โ 4 2 + 4 4 โ 2 5 + 4 4 โ 4 6 + 2 7 โ 2 5 + 2 7 โ 8 ) ๐๐ฆ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
2
3
4
5
6
7
8
๐ฟ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
๐ฆ
= โซ0 (2 โ 4 2 โ 2 3 + 9 4 โ 4 5 โ 4 6 + 4 7 โ 8 ) ๐๐ฆ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฟ
๐ฆ2
4 ๐ฆ3
1 ๐ฆ4
9 ๐ฆ5
2 ๐ฆ6
4 ๐ฆ7
1 ๐ฆ8
1 ๐ฆ9
37
=(
โ
๐ฟ
๐๐ค = ๐
๐ฟ๐๐ฟ =
๐ฟ
๐ฅ
3 ๐ฟ2
๐๐ข
|
๐๐ฆ ๐ฆ=0
630๐
37๐๐
1260
=โ
๐ถ๐ =
โ
2 ๐ฟ3
=
๐๐ฅ
1
37 ๐
๐๐ฅ 1โ2
๐
37 ๐ฟ
๐ฅ
=
315 ๐ฅ
โ
+
โ
โ
+
โ
)| =
๐ฟ
3 ๐ฟ5
7 ๐ฟ6
2 ๐ฟ7
9 ๐ฟ8 0
315
2๐
๐๐
37 ๐๐ฟ
๐ = ๐๐ 2 = ๐๐ 2
๐ฟ
๐๐ฅ
315 ๐๐ฅ
1260๐
1260 ๐
1260 1
๐ฟ2 =
๐ฅ=
๐ฅ2 =
๐ฅ2
37๐๐
37 ๐๐๐ฅ
37 ๐
๐๐ฅ
โ
5 ๐ฟ4
5.83
๐
๐๐ฅ 1โ2
0.685
๐
๐๐ฅ 1โ2
๐ฟโ
๐ฅ
=
๐ป=
3 ๐ฟ
10 ๐ฅ
๐ฟโ
๐
โ
1.751
๐
๐๐ฅ 1โ2
โ 2.554.
๐
๐๐ฅ =
๐๐๐ฅ
๐
058:0160
Jianming Yang
Fall 2012
Chapter 7
21
5 Turbulent Boundary Layer
5.1 Transition to Turbulence
Chapter 6 described the transition process as a succession of Tollmien-Schlichting waves,
development of ฮ - structures, vortex decay and formation of turbulent spots as
preliminary stages to fully turbulent boundary-layer flow.
The phenomena observed during the transition process are similar for the flat plate
boundary layer and for the plane channel flow, as shown in the following figure based on
measurements by M. Nishioka et al. (1975). Periodic initial perturbations were generated
in the BL using an oscillating cord.
For typical commercial surfaces transition occurs at ๐
๐๐ฅ,๐ก๐ = 5 × 105 . However, one
can delay the transition to ๐
๐๐ฅ,๐ก๐ = 3 × 106 with care in polishing the wall.
058:0160
Jianming Yang
Chapter 7
22
Fall 2012
5.2 Reynolds Averaged 2D Boundary Layer Equations
๐ขฬ๐ = ๐๐ + ๐ข๐ ๐ฬ = ๐ + ๐
Substituting ๐ขฬ๐ into continuity equation and taking the time average we obtain,
๐๐๐
๐๐ฅ๐
๐๐ข๐
=0
๐๐ฅ๐
=0
Similarly for the momentum equations and using continuity (neglecting ๐),
๐๐๐
๐๐ก
๐๐๐
+ ๐๐
๐๐ฅ๐
=โ
1 ๐๐
๐ ๐๐ฅ๐
+
1 ๐
๐ ๐๐ฅ๐
๐ฬ
๐๐ = โ
1 ๐๐
๐ ๐๐ฅ๐
+
1 ๐
๐ ๐๐ฅ๐
[๐ (
๐๐๐
๐๐ฅ๐
+
๐๐๐
๐๐ฅ๐
) โ ๐๐ข
ฬ
ฬ
ฬ
ฬ
ฬ
]
๐ ๐ข๐
a. ๐ฟ (๐ฅ ) โช ๐ฅ, which means ๐ โช ๐, ๐โ๐๐ฅ โช ๐โ๐๐ฆ
b. mean flow structure is two-dimensional: ๐ = 0, ๐โ๐๐ง = 0
Note the mean lateral turbulence is actually not zero, ๐ค๐ค
ฬ
ฬ
ฬ
ฬ
ฬ
โ 0, but its ๐ง derivative is
assumed to vanish.
Then, we get the following BL equations for incompressible steady flow:
Assume
๐๐
+
๐๐
๐๐ฅ
๐๐ฆ
๐๐
๐
๐๐
๐๐ฆ
๐๐ฅ
=0
+๐
โ โ๐
๐๐
๐๐ฆ
ฬ
ฬ
ฬ
ฬ
๐๐ฃ๐ฃ
๐๐ฆ
Continuity
โ ๐๐
๐๐๐
๐๐ฅ
+
1 ๐๐
๐ ๐๐ฆ
x-momentum
y-momentum
Where ๐๐ is the free-stream velocity and ๐ = ๐
๐๐
๐๐ฆ
โ ๐๐ข๐ฃ
ฬ
ฬ
ฬ
ฬ
.
058:0160
Jianming Yang
Chapter 7
23
Fall 2012
Note:
๏ท The equations are solved for the time averages ๐ and ๐
๏ท The shear stress now consists of two parts:
1. first part is due to the molecular exchange and is computed from the timeaveraged field as in the laminar case;
2. The second part appears additionally and is due to turbulent motions.
๏ท The additional term is new unknown for which a relation with the average field of
the velocity must be constructed via a turbulence model.
Integrate y- momentum equation across the boundary layer
๐ โ ๐๐ (๐ฅ ) โ ๐๐ฃ๐ฃ
ฬ
ฬ
ฬ
So, unlike laminar BL, there is a slight variation of pressure across the turbulent BL
due to velocity fluctuations normal to the wall, which is no more than 4% of the stream
velocity and thus can be neglected. The Bernoulli relation is assumed to hold in the
inviscid free-stream:
๐๐๐
๐๐ฅ
= โ๐๐๐
๐๐๐
๐๐ฅ
Assume the free stream conditions, ๐๐ (๐ฅ ) is known, the boundary conditions:
No slip:
๐(๐ฅ, 0) = ๐ (๐ฅ, 0) = 0
Free stream matching: ๐(๐ฅ, ๐ฟ ) = ๐๐ (๐ฅ )
058:0160
Jianming Yang
Chapter 7
24
Fall 2012
5.3 Momentum Integral Equations
The momentum integral equation has the identical form as the laminar-flow relation:
๐๐ค
๐๐๐2
=
๐ถ๐
2
=
๐๐
๐๐ฅ
+ (2 + ๐ป )
๐ ๐๐๐
๐๐ ๐๐ฅ
๐ป=
๐ฟโ
๐
For laminar flow:
(๐ถ๐ , ๐ป, ๐) are correlated in terms of simple parameter ๐ =
๐ 2 ๐๐๐
๐ ๐๐ฅ
For Turbulent flow:
(๐ถ๐ , ๐ป, ๐) cannot be correlated in terms of a single parameter. Additional parameters
and relationships are required that model the influence of the turbulent fluctuations.
There are many possibilities all of which require a certain amount of empirical data.
5.4 Flat Plate Boundary Layer (Zero Pressure Gradient)
5.4.1 Log Law Analysis of Smooth Flat Plate
Assume log-law can be used to approximate turbulent velocity profile and use to get ๐ถ๐ =
๐ถ๐ (๐ฟ ) relationship
๐
๐ขโ
1
๐ฆ๐ขโ
๐
๐
= ln
+๐ต
At ๐ฆ = ๐ฟ (edge of boundary layer)
๐๐
๐ขโ
1
๐ฟ๐ขโ
๐
๐
= ln
+๐ต
where ๐
= 0.41 and ๐ต = 5
058:0160
Jianming Yang
Chapter 7
25
Fall 2012
However:
๐๐
๐ขโ
=
๐ฟ๐ขโ
๐
๐๐
โ๐๐ค โ๐
=
=
๐ฟ๐๐ ๐ขโ
๐ ๐๐
1โ2
2
1
( )
๐๐
โ(12๐๐2๐ ๐ถ๐ )โ๐
=( )
๐ถ๐
๐ถ๐ 1โ2
= ๐
๐๐ฟ ( )
2
๐ถ๐ 1โ2
= ln [๐
๐๐ฟ ( )
๐ถ๐
1โ2
2
๐
2
]+๐ต
Skin friction law for turbulent flat-plate flow
Following a suggestion of Prandtl, we can forget the complex log law and simply use a
power-law approximation:
โ
๐ถ๐ โ 0.02๐
๐๐ฟโ1 6
Use ๐โ๐๐ Profile to Get ๐, ๐ถ๐ , ๐ฟ , ๐ฟ โ , and ๐ป for Smooth Plate
๐๐ค = ๐๐๐2
๐๐
๐๐ฅ
1
= ๐ถ๐ ๐๐๐2
2
๐ถ๐ = 2
or
โ6
LHS: From Log law or ๐ถ๐ โ 0.02๐
๐๐ฟโ1
RHS: Use
๐
๐๐
to get
๐๐
๐๐ฅ
๐๐
๐๐ฅ
058:0160
Jianming Yang
Chapter 7
26
Fall 2012
Following another suggestion of Prandtl, the turbulent velocity profile can be
approximated by a one-seventh-power law
๐
๐๐
๐=
๐ฟ ๐
โซ0 ๐ (1
๐
๐ถ๐ = 2
โ6
๐
๐๐ฟโ1
๐๐
๐๐ฅ
โ
๐ฆ 1โ7
โ( )
๏ ๏
๐
๐ฟ ๐ฆ 1โ7
โซ0 (๐ฟ ) [1
๐ฟ
๐๐
) ๐๐ฆ =
โ6
= 0.02๐
๐๐ฟโ1
= 9.72
๐๐ฟ
๐๐ฅ
=
=2
๐
(
7
๐ฆ 1โ7
โ( )
๐ฟ
] ๐๐ฆ =
7
72
๐ฟ๏ ๏
๐ฟ)
๐๐ฅ 72
๐ (๐
๐ )
๐ (๐
๐๐ฟ )
9.72 ( ๐ฟ)
โ1โ6
๐ ๐
๐๐ฅ
๐
๐
๐ฟ
=
1
9.72
๐ (๐
๐๐ฅ )
Assuming that: ๐ฟ = 0 at ๐ฅ = 0 or ๐
๐๐ฟ = 0 at ๐
๐๐ฅ = 0:
๐
๐๐ฟ โ 0.16๐
๐๐ฅ 6โ7
or
๐ฟ
๐ฅ
โ
0.16
๐
๐๐ฅ 1โ7
Turbulent BL has almost linear growth rate which is much faster than laminar BL which
๐ฟ
5.0
is โ
1โ2 .
๐ฅ
๐
๐๐ฅ
Other properties:
๐ถ๐ โ
๐ถ๐ท โ
0.027
๐
๐๐ฅ 1โ7
0.031
๐
๐๐ฟ 1โ7
๐๐ค,๐ก๐ข๐๐ โ
7
โ
1
= ๐ถ๐ (๐ฟ) ๐ฟ = ๐ฟ
6
8
0.0135๐1โ7 ๐6โ7 ๐๐ 13โ7
๐ฅ 1โ7
๐ป=
๐ฟโ
๐
= 1.3
๐๐ค,๐ก๐ข๐๐ decreases slowly with ๐ฅ, increases with ๐ and ๐๐2 and insensitive to ๐
058:0160
Jianming Yang
Chapter 7
27
Fall 2012
5.4.2 Influence of Roughness
The influence of roughness can be analyzed in the manner as done for pipe flow i.e.
1
๐ข+ = ln ๐ฆ + + ๐ต โ โ๐ต(๐ + )
๐
1
โ๐ต(๐ + ) = ln(1 + 0.3๐ + )
๐
i.e. rough wall velocity profile shifts downward by a constant amount โ๐ต(๐ + ) which,
increases with ๐ + = ๐๐ขโ โ๐.
A complete rough-wall analysis can be done using the
composite log-law in a similar manner as done for a
smooth wall, i.e., determine ๐ถ๐ (๐ฟ ) and ๐(๐ฟ ) from and
equate using momentum integral equation ๐ถ๐ (๐ฟ ) =
2
๐
๐๐ฅ
๐(๐ฟ ). Then eliminate ๐ฟ to get ๐ถ๐ (๐ฅ, ๐ โ๐ฅ ).
However, analysis is complicated: solution is Fig. 7.6.
For fully rough-flow a curve fit to the ๐ถ๐ and ๐ถ๐ท
equations is given by,
๐ฅ โ2.5
๐ถ๐ = (2.87 + 1.58 log )
๐
๐ฟ โ2.5
๐ถ๐ท = (1.89 + 1.62 log )
๐
Again, shown on Fig. 7.6. along with transition region
curves developed by Schlichting which depend on ๐
๐๐ก๐๐๐๐ = 5 × 105 and 3 × 106 .
058:0160
Jianming Yang
Chapter 7
28
Fall 2012
6 Boundary Layer with Pressure Gradient
๐
๐๐
๐๐ฅ
+๐
๐๐
๐๐ฆ
=โ
1 ๐๐
๐ ๐๐ฅ
+
1 ๐
๐ ๐๐ฆ
(๐
๐๐
๐๐ฆ
โ ๐๐ข๐ฃ
ฬ
ฬ
ฬ
ฬ
)
The pressure gradient term has a large influence on the solution. Especially, adverse
pressure gradient (i.e. increasing pressure) can cause flow separation. Recall that the ymomentum equation subject to the
boundary layer assumptions reduced to
๐๐
๐๐ฆ
= 0, i.e., ๐ = ๐๐ = const.
across BL.
That is, pressure (which drives BL
equations) is given by external inviscid
flow solution which in many cases is
also irrotational.
Even without solving the BL equations
we can deduce information about the
shape of the velocity profiles just by
evaluating the BL equations at the wall
(๐ฆ = 0)
๐
๐2 ๐
๐๐ฆ 2
=
๐๐๐
๐๐๐
๐๐ฅ
๐๐ฅ
= โ๐๐๐
๐๐๐
๐๐ฅ
058:0160
Jianming Yang
Chapter 7
29
Fall 2012
Thus the curvature of the velocity profile at the wall is related to the pressure gradient.
Point of inflection: a point where a graph changes between concave upward and concave
downward.
The point of inflection is the location where second derivative of ๐ is zero, i.e.
๐2 ๐
๐๐ฆ 2
=0
(a) favorable gradient: px<0, Ux>0, uyy<0
No point of inflection i.e. curvature is negative all across the BL and BL is very
resistant to separation. Note uyy(๏ค)<0 in order for u to merge smoothly with U.
(b) zero gradient: px = Ux = uyy = 0
(c) weak adverse gradient: px>0, Ux<0, uyy>0
PI in flow, still no separation
(d) critical adverse gradient: px>0, Ux<0, uyy>0, uy = 0
PI in flow, incipient separation
(e) excessive adverse gradient: px>0, Ux<0, uyy>0, uy < 0
PI in flow, backflow near wall, i.e., separated flow region. Main flow breaks away or
separates from the wall: large increase in drag and loss of performance:
Hseparation = 3.5 laminar
= 2.4 turbulent
058:0160
Jianming Yang
Fall 2012
Chapter 7
30
058:0160
Jianming Yang
Chapter 7
31
Fall 2012
7 Separation
7.1 What causes separation?
The increasing downstream pressure slows down the wall flow and can make it go
backward-flow separation.
๐๐โ๐๐ฅ > 0 adverse pressure gradient, flow separation may occur.
๐๐โ๐๐ฅ < 0 favorable gradient, flow separation can never occur
Previous analysis of BL was valid before separation.
7.2 Separation Condition
๐๐
๐๐ค = ๐ ( )
=0
๐๐ฆ ๐ฆ=0
Note: 1. Due to backflow close to the wall, a strong thickening of the BL takes place
and BL mass is transported away into the outer flow
2. At the point of separation, the streamlines leave the wall at a certain angle.
058:0160
Jianming Yang
Fall 2012
Chapter 7
32
7.3 Separation of Boundary Layer
1. D to E, pressure drop, pressure is transformed into kinetic energy.
2. From E to F, kinetic energy is transformed into pressure.
3. A fluid particle directly at the wall in the boundary layer is also acted upon by the
same pressure distribution as in the outer flow (inviscid).
4. Due to the strong friction forces in the BL, a BL particle loses so much of its kinetic
energy that is cannot manage to get over the โpressure gradientโ from E to F.
5. The following figure shows the time sequence of this process:
a. reversed motion begun at the trailing edge
b. boundary layer has been thickened, and start of the reversed motion has moved
forward considerably.
c. and d. a large vortex formed from the backflow and then soon separates from the
body.
058:0160
Jianming Yang
Fall 2012
Chapter 7
33
058:0160
Jianming Yang
Fall 2012
Chapter 7
34
058:0160
Jianming Yang
Fall 2012
Chapter 7
35
058:0160
Jianming Yang
Fall 2012
Chapter 7
36
058:0160
Jianming Yang
Fall 2012
Chapter 7
37
8 Drag and Lift
8.1 Basic Considerations
Characteristic area ๐ด, which may
differ depending on the body shape:
1. Frontal area, the body as seen
from the stream; suitable for thick,
stubby bodies, such as spheres,
cylinders, cars, trucks, missiles,
projectiles, and torpedoes.
2. Planform area, the body area as seen from above; suitable for wide, flat bodies
such as wings and hydrofoils.
3. Wetted area, customary for surface ships and barges.
In using drag or other fluid force data, it is important to note what length and area are
being used to scale the measured coefficients.
Drag is decomposed into form and skin-friction contributions:
๐ถ๐ท = 1
1
2
2๐๐ ๐ด
๐ถ๐ฟ = 1
1
2
2๐๐ ๐ด
{โซ๐ (๐ โ ๐โ )๐ง โ ๐ข๐๐ด + โซ๐ ๐๐ค ๐ญ โ ๐ข๐๐ด} = ๐ถ๐ท,๐ + ๐ถ๐
{โซ๐ (๐ โ ๐โ )๐ง โ ๐ฃ๐๐ด + โซ๐ ๐๐ค ๐ญ โ ๐ฃ๐๐ด}
058:0160
Jianming Yang
๐ก
๐
๐ก
๐
Chapter 7
38
Fall 2012
โช1
๐ถ๐ โซ ๐ถ๐ท,๐ streamlined body
~1
๐ถ๐ท,๐ โซ ๐ถ๐
bluff body
058:0160
Jianming Yang
Fall 2012
Streamlining: One way to reduce the drag
๏ reduce the flow separation๏ reduce the pressure drag
๏ increase the surface area ๏ increase the friction drag
๏ Trade-off relationship between pressure drag and friction drag
Trade-off relationship between pressure drag and friction drag
Benefit of streamlining: reducing vibration and noise
Chapter 7
39
058:0160
Jianming Yang
Fall 2012
8.2 Drag of 2-D Bodies
Chapter 7
40
058:0160
Jianming Yang
Fall 2012
Chapter 7
41
058:0160
Jianming Yang
Fall 2012
Chapter 7
42
058:0160
Jianming Yang
Fall 2012
Chapter 7
43
058:0160
Jianming Yang
Chapter 7
44
Fall 2012
8.3 3D Bodies
๐
๐ โช 1: โ โ ๐ฎ = 0 and โ๐ โ ฮผโ2 ๐ฎ
๐นsphere = 3๐๐๐๐ (Stokes)
๐ถ๐ท =
๐นsphere
1
2
2๐๐ ๐ด
=
24
๐๐๐โ๐
=
24
๐
๐๐
058:0160
Jianming Yang
Fall 2012
Chapter 7
45
058:0160
Jianming Yang
Fall 2012
Chapter 7
46
058:0160
Jianming Yang
Fall 2012
Chapter 7
47
8.4 Effect of Compressibility on Drag
๐ถ๐ท = ๐ถ๐ท (๐
๐, ๐๐)
๐
๐๐ = โ
๐
๐: speed of sound = rate at which infinitesimal disturbances are propagated from their
source into undisturbed medium
๐๐ < 0.3 flow is incompressible, i.e., ๏ฒ ๏พ constant
๐๐ < 1
subsonic
๐๐ ๏พ 1
transonic (=1 sonic flow)
๐๐ > 1
supersonic
๐๐ >> 1
hypersonic
๐ถ๐ท increases for ๐๐ ๏พ 1 due to shock waves and wave drag
๐๐critical (sphere) ๏พ .6
๐๐critical (slender bodies) ๏พ 1
For ๐ โฅ ๐: upstream flow is not warned of approaching disturbance which results in the
formation of shock waves across which flow properties and streamlines change
discontinuously
058:0160
Jianming Yang
Fall 2012
Chapter 7
48
058:0160
Jianming Yang
Fall 2012
Chapter 7
49
058:0160
Jianming Yang
Fall 2012
Chapter 7
50
© Copyright 2026 Paperzz