Hedge with an Edge An Introduction to the Mathematics of Finance Monte Carlo Methods Riaz Ahmed & Adnan Khan Lahore Uviersity of Management Sciences Topics • Simulating Bernoulli Random Variable • Generating Random Variables – Inverse Transform Method – Box Muller Method – Rejection Method • Simulate a 1-D random Walk – Calculate the mean – Calculate the Variance • • • • Simulating Brownian Motion Geometric Brownian Motion Arithmetic Brownian Motion Variance Reduction Techniques Simulating a Binomially Distributed Random Variable • Note sum of Bernoulli trials is a binomial • Let X i be a Bernoulli trial with probability ‘p’ of success • is binomial ‘n’, ‘p’ Some Properties • Distribution of successes in trials • Expected Value • Variance Simulation of Binomial • Generating Bernoulli • Binomial as the sum of Bernoulli • Monte Carlo Simulation • Numerical vs. Exact Mean and Variance Simulation of Binomial hist 25 20 15 hist 10 5 0 0 1 2 3 4 5 6 7 8 9 10 Continuous Random Variables • Inverse Transform Method – Suppose a random variable has cdf ‘F(x)’ – Then Y=F-1(U) also had the same cdf • Generating the exponential • Generate the exponential, compare with exact cdf • Generate a r.v. with cdf Simulating the Exponential 1400 1200 1000 800 600 400 200 0 0 0.120.240.360.48 0.6 0.720.840.961.08 1.2 1.321.441.561.68 1.8 1.922.042.162.28 2.4 2.522.642.762.88 3 Simulating Normal using Inverse Transform • Cannot get a closed form in terms of elementary functions • Excel has built in command normsinv() • Use normsinv(rand()) Simulation of Normal 600 500 400 300 Series1 Series2 200 100 0 -100 Series3 Rejection Method • Simulate • To Simulate • If & look @ accept, else reject • To Simulate N(0,1) let • If set Box Muller Method • Recall the cdf for the standard normal is • We saw one way was to invert this • Another technique is to generate • Then and where Simulation 800 700 600 500 400 300 200 100 0 Weiner Process • W(t) CT-CS process is a Weiner Process if W(t) depends continuously on t and the following hold a) b) c) are independent Simulating Brownian Motion • Initialize at 0 as W(0)=0 • Simulate Weiner Increments according to • The Weiner Process then follows Time -0.3 -0.4 -0.5 -0.6 -0.7 4.65 4.5 4.35 4.2 4.05 3.9 3.75 3.6 3.45 3.3 3.15 3 2.85 2.7 2.55 2.4 2.25 2.1 1.95 1.8 1.65 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Simulation Weiner Process 0.1 0 -0.1 -0.2 Weiner Process Simulation 0.8 0.6 0.4 0.2 Weiner Process 1 0 Time 0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 3.75 3.9 4.05 4.2 4.35 4.5 4.65 Weiner Process 2 -0.2 Weiner Process 3 Weiner Process 4 Weiner Process 5 -0.4 -0.6 -0.8 -1 Stock Price Model • Modeled by Geometric Brownian Motion • Note • To simulate use the ‘Euler Scheme’ Simulating GBM 6 5 4 3 GBM1 GBM2 Mean 2 1 0 4.65 4.5 4.35 4.2 4.05 3.9 3.75 3.6 3.45 3.3 3.15 3 2.85 2.7 2.55 2.4 2.25 2.1 1.95 1.8 1.65 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Simulating GBM 3.5 3 2.5 2 Series1 1.5 exact 1 0.5 0 Mean Reverting Process • Arithmetic Brownian Motion is mean reverting • Interest rate models • The numerical scheme is 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Simulating ABM Arithmetic Brownian Motion 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 4.65 4.5 4.35 4.2 4.05 3.9 3.75 3.6 3.45 3.3 3.15 3 2.85 2.7 2.55 2.4 2.25 2.1 1.95 1.8 1.65 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Simulating ABM 1.2 1 0.8 0.6 Exact Numerical 0.4 0.2 0 Option Pricing using Monte Carlo • Generate several risk-neutral random walks for the asset starting at the asset price today and going on till expiry. • For each path generated calculate the payoff. • Calculate average the average of all the payoffs • Take the present value of this average to get the option value today. Pricing of European Call Challenge Problem Simulate using Monte Carlo techniques the price of a European call option where the underlying with volatility 0.5 interest rate 3% exercise price 100 and currently underlying at 90
© Copyright 2026 Paperzz