Document

Chapter one
1-Real number
ℝ = {𝑋: βˆ’βˆž < π‘₯ < ∞}
If a and b are two real no. then one of the following is true
Some properties of R
1-if a>b then –a<-b
1
1
π‘Ž
𝑏
2- if a>b then <
3-if a<b ,b<c then a<c
4-if a<b then a+c<b+ c then a<c βˆ€ real no.
5-if a<b ,c<d then a+c < b+d
6-if a<b ,c any +ve real no. then a.c <b.c
7-if a<b ,c any -ve real no. then a.c >b.c
8-if 0<a<b , 0<c<d then a.c <b.d
9-if a<b<0 , c<d<0 then a.c >b.d
2-Intervals
An interval is asset of real no.s x having one of the following forms
1- Open interval (a,b) all real no.s x a<x<b
(π‘Ž, 𝑏) = {𝑋: π‘Ž < π‘₯ < 𝑏}
2- closed interval [a,b] all real no.s x a≀x≀b
[π‘Ž, 𝑏] = {𝑋: π‘Ž ≀ π‘₯ ≀ 𝑏}
1
3- half open from the left or half closed from the right (a,b] , all real no.s
x β†’ a<x<b
(π‘Ž, 𝑏] = {𝑋: π‘Ž < π‘₯ ≀ 𝑏}
4- half open from the right or half closed from the left [a,b), all real no.s
x β†’ a≀x<b
[π‘Ž, 𝑏) = {𝑋: π‘Ž ≀ π‘₯ ≀ 𝑏}
Note:
3 βˆ’ π‘°π’π’†π’’π’–π’‚π’π’Šπ’•π’Šπ’†π’”
Ex: find the set of all the following inequalities:
1βˆ’
2
7
> 2 ,π‘₯ β‰  0 ,
π‘₯
π‘₯βˆˆπ‘…
1st case : x>0
7 > 2π‘₯ β‡’
7
7
>π‘₯β‡’π‘₯<
2
2
7
Sol. set 1st case=(0, )
2
2st case : x<0
7
7
> 2 β‡’ 7 < 2π‘₯ β‡’
<π‘₯
π‘₯
2
Sol. set 2st case= βˆ…
2-(x+3)(x+4)>0
Sol:
1st case: (x+3)>0 ʌ (x+4)>0
x>-3
ʌ x>-4
sol. Set 1st case =(-3,∞)
2st case: (x+3)<0
X<-3
ʌ
(x+4)<0
ʌ x<-4
sol. Set 2st case =(-∞,-4)
sol. set=(-3, ∞) U (-∞,-4)=R/[-4,-3]
H.W: find the set of all the following inequalities:
1- 2+3x<5x+8
2- 4<3x-2≀ 10
34-
3
π‘₯
π‘₯βˆ’3
<4, π‘₯ β‰ 3 , π‘₯ βˆˆπ‘…
π‘₯βˆ’1
π‘₯ 2 +π‘₯βˆ’6
<0
5- Absolute value
The absolute value of real no. x denoted by |π‘₯|is define as follows:
π‘₯ 𝑖𝑓 π‘₯ β‰₯ 0
|π‘₯| = {
βˆ’π‘₯ 𝑖𝑓 π‘₯ < 0
Properties of absolute value
1-|π‘₯| < π‘Ž 𝑖𝑓𝑓 βˆ’ π‘Ž < π‘₯ < π‘Ž
2-|π‘₯| ≀ π‘Ž 𝑖𝑓𝑓 βˆ’ π‘Ž ≀ π‘₯ ≀ π‘Ž
3-|π‘₯| > π‘Ž 𝑖𝑓𝑓 π‘₯ > π‘Ž π‘œπ‘Ÿ π‘₯ < βˆ’π‘Ž
4-|π‘₯| β‰₯ π‘Ž 𝑖𝑓𝑓 π‘₯ β‰₯ π‘Ž π‘œπ‘Ÿ π‘₯ ≀ βˆ’π‘Ž
Ex: find the set of all the following:
1-|7 βˆ’ 4π‘₯| β‰₯ 1
Sol:
7 βˆ’ 4π‘₯ β‰₯ 1
π‘₯≀
3
2
Or
7 βˆ’ 4π‘₯ ≀ βˆ’1
π‘₯β‰₯2
3
3
2
2
Sol. Set:=(∞, ] βˆͺ [2, ∞)=R/( , 2)
H.W: find the set of all the following:
1-|π‘₯ βˆ’ 4| < 5
2-|2π‘₯ βˆ’ 5| = 7
3-|π‘₯ βˆ’ 2| = |3π‘₯ + 4|
4-|2π‘₯ βˆ’ 5| > 3
5-|
3π‘₯+8
2π‘₯βˆ’3
2
|≀4
6-|π‘₯ + 2π‘₯ βˆ’ 24| > 0
Theorem:
Let a,b be two no.s then
1-|π‘Ž| = |βˆ’π‘Ž|
4
2-|π‘Ž. 𝑏| = |π‘Ž| . |𝑏|
π‘Ž
|π‘Ž|
3-| | = |𝑏|
𝑏
,𝑏 β‰  0
4-|π‘Ž + 𝑏| ≀ |π‘Ž| + |𝑏|
5-|π‘Ž βˆ’ 𝑏| ≀ |π‘Ž| + |𝑏|
6-|π‘Ž βˆ’ 𝑏| β‰₯ |π‘Ž| βˆ’ |𝑏|
7-|π‘Ž + 𝑏| β‰₯ |π‘Ž| βˆ’ |𝑏|
Proof:
1-|π‘Ž| = |βˆ’π‘Ž| = √(βˆ’π‘Ž)2 = |βˆ’π‘Ž|
2-|π‘Ž. 𝑏| = |π‘Ž| . |𝑏| = √(π‘Žπ‘)2 = βˆšπ‘Ž2 𝑏 2 = βˆšπ‘Ž2 . βˆšπ‘ 2 = |π‘Ž||𝑏|
π‘Ž
|π‘Ž|
π‘Ž
π‘Ž2
𝑏
𝑏2
3-| | = |𝑏| = √( )2 = √
𝑏
=
βˆšπ‘Ž2
βˆšπ‘2
|π‘Ž|
= |𝑏|
4-|π‘Ž + 𝑏| ≀ |π‘Ž| + |𝑏|
= √(π‘Ž + 𝑏)2 = βˆšπ‘Ž2 + 2π‘Žπ‘ + 𝑏 2 = βˆšπ‘Ž2 + 2βˆšπ‘Ž2 . βˆšπ‘ 2 + 𝑏 2 =
√(βˆšπ‘Ž2 + βˆšπ‘ 2 )2 = βˆšπ‘Ž2 + βˆšπ‘ 2 = |π‘Ž| + |𝑏|
5-|π‘Ž βˆ’ 𝑏| ≀ |π‘Ž| + |𝑏|
|π‘Ž βˆ’ 𝑏| = |π‘Ž + (βˆ’π‘)| ≀ |π‘Ž| + |βˆ’π‘| = |π‘Ž| + |𝑏|
6-|π‘Ž βˆ’ 𝑏| β‰₯ |π‘Ž| βˆ’ |𝑏|
|π‘Ž| = |π‘Ž + 𝑏 βˆ’ 𝑏| ≀ |π‘Ž βˆ’ 𝑏| + |𝑏| β†’ |π‘Ž βˆ’ 𝑏| β‰₯ |π‘Ž| βˆ’ |𝑏|
7-|π‘Ž + 𝑏| β‰₯ |π‘Ž| βˆ’ |𝑏|
|π‘Ž| = |π‘Ž + 𝑏 βˆ’ 𝑏| ≀ |π‘Ž + 𝑏| + |βˆ’π‘| β†’ |π‘Ž + 𝑏| β‰₯ |π‘Ž| βˆ’ |𝑏|
5
Chapter two
1-Relation:
Let a,bβ‰  βˆ… so every set subset of A× π΅ is represent relation from A
to B.
2-Functions and its Algebra:
A function from aset A to set B is arule that assigns each element
π‘₯ ∈ 𝐴 to only element in B satisfy
𝑓: 𝐴 β†’ 𝐡 𝑖𝑓𝑓 βˆ€π‘₯ ∈ 𝐴 βˆƒ 𝑦 ∈ 𝐡 , 𝑓(π‘₯) = 𝑦
3-The domain:
The set D is called the domain of f is the set of all x ∈ first component
occurring in the ordered pairs of f , denoted by dom (f)
Dom (f)={π‘₯ ∈ 𝐴 ; (π‘₯, 𝑦) ∈ 𝑓 , π‘“π‘Ÿπ‘œπ‘š π‘ π‘œπ‘šπ‘’ 𝑦 ∈ 𝐡}
4-The codomain:
The codomain is for all element in two set B .and denoted by π‘π‘œπ‘‘π‘“ such
that
π‘π‘œπ‘‘π‘“ = {𝑦: 𝑦 ∈ 𝐡 }
5-Range:
Is the set of second component which assigne by element of first
component and denoted by 𝑅𝑓
𝑅𝑓 = {𝑓(π‘₯); π‘₯ ∈ 𝐷𝑓 }
6-Kind of function
The function divided into kind
6
1-Algebraic function
i) polynomial function
π‘Ž
𝑦 = π‘Ž0 + π‘Ž1 π‘₯ + π‘Ž2 π‘₯ 2 + β‹― + π‘Žπ‘› π‘₯ 𝑛 π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ π‘Ž0 , [β€²π‘‚πΏπ‘ˆπΎπ½π» , … . . , π‘Žπ‘› ∈ 𝑅
1
ii) Regular function
iii) Radical function
EX: find the domain of the functions:
1- 𝑦 = π‘₯ + 2
2- 𝑦 =
π‘₯
π‘₯ 2 βˆ’1
β‡’ 𝐷𝑓 = 𝑅
β‡’ π‘₯2 βˆ’ 1 = 0
β‡’ π‘₯ 2 = 1 β‡’ π‘₯ = βˆ“1 β‡’ 𝐷𝑓 = 𝑅/{1, βˆ’1}
1
1
3- 𝑦 = √2π‘₯ βˆ’ 1 β‡’ 2π‘₯ βˆ’ 1 β‰₯ 0 β‡’ 2π‘₯ β‰₯ 1 β‡’ π‘₯ β‰₯ β‡’ 𝐷𝑓 = {π‘₯: π‘₯ β‰₯ }
2
2
4- 𝑦 =
1
√1βˆ’π‘₯ 2
β‡’ 1 βˆ’ π‘₯ 2 > 0 β‡’ 1 > π‘₯ 2 β‡’ π‘₯ < βˆ“1 β‡’ 𝐷𝑓 = (βˆ’1,1)
H.W: find the domain of the functions:
1- 𝑦 = √π‘₯
2- 𝑦 =
1
βˆšπ‘‹
3- 𝑦 = √π‘₯ 2 βˆ’ 9
4- 𝑦 = √1 βˆ’ π‘₯ 2
2-Non-Algebraic function
1-trigonometric function
5678-
Exponential function
Logarithmic function2
Absolute function
Identity function
7-Some operations on functions:
1-(𝑓 + 𝑔)(π‘₯) = 𝑓(π‘₯) + 𝑔(π‘₯) ; π‘₯ ∈ 𝐷𝑓 ∩ 𝐷𝑔
2- (𝑓 βˆ’ 𝑔)(π‘₯) = 𝑓(π‘₯) βˆ’ 𝑔(π‘₯) ;
7
β‡’ 𝑑(𝑓 + 𝑔) = 𝐷𝑓 ∩ 𝐷𝑔
π‘₯ ∈ 𝐷𝑓 ∩ 𝐷𝑔 β‡’ 𝑑(𝑓 βˆ’ 𝑔) = 𝐷𝑓 ∩ 𝐷𝑔
3-(𝑓. 𝑔)(π‘₯) = 𝑓(π‘₯). 𝑔(π‘₯) ; π‘₯ ∈ 𝐷𝑓 ∩ 𝐷𝑔
𝑓
β‡’ 𝑑(𝑓. 𝑔) = 𝐷𝑓 ∩ 𝐷𝑔
𝑓(π‘₯)
4-( ) (π‘₯) =
; π‘₯ ∈ 𝐷𝑓 ∩ 𝐷𝑔 , {π‘₯: 𝑔(π‘₯) β‰  0}
𝑔
𝑔(π‘₯)
𝑓
β‡’ 𝑑 ( ) = 𝐷𝑓 ∩ 𝐷𝑔
𝑔
βˆ’ {π‘₯: 𝑔(π‘₯) = 0}
Ex:𝑓(π‘₯) = √π‘₯ , 𝑔(π‘₯) = √1 βˆ’ π‘₯ find 𝑓 + 𝑔 , 𝑓 βˆ’ 𝑔 , 𝑓. 𝑔,
𝑓
𝑔
,
𝑔
𝑓
,and
its domain
Sol: 𝐷𝑓 = [0, ∞) , 𝐷𝑔 = (βˆ’βˆž, 1] β†’
(𝑓 + 𝑔)(π‘₯) = √π‘₯
𝑑(𝑓 + 𝑔) = 𝐷𝑓 ∩ 𝐷𝑔
= [0,1]
+ √1 βˆ’ π‘₯
(𝑓 βˆ’ 𝑔)(π‘₯) = √π‘₯ βˆ’ √1 βˆ’ π‘₯
(𝑓. 𝑔)(π‘₯) = √π‘₯ . √1 βˆ’ π‘₯=√π‘₯(1 βˆ’ π‘₯) = √π‘₯ βˆ’ π‘₯ 2
𝑓
𝑓(π‘₯)
(𝑔) (π‘₯) = 𝑔(π‘₯) =
𝑔
𝑔(π‘₯)
(𝑓 ) (π‘₯) = 𝑓(π‘₯) =
√π‘₯
√1βˆ’π‘₯
√1βˆ’π‘₯
√π‘₯
=√
=√
π‘₯
1βˆ’π‘₯
1βˆ’π‘₯
H.W: 𝑓𝑖𝑛𝑑 𝑓 + 𝑔 , 𝑓 βˆ’ 𝑔 , 𝑓. 𝑔,
π‘₯
=
𝑓
𝑔
,
𝑔
𝑓
,and its domain of the following
functions:
1- 𝑓(π‘₯) = √π‘₯ + 1 , 𝑔(π‘₯) = √4 βˆ’ π‘₯ 2
2- 𝑓(π‘₯) = √π‘₯ 2 βˆ’ 1 , 𝑔(π‘₯) = π‘₯ 2
3- 𝑓(π‘₯) = π‘₯ 2 + 1 , 𝑔(π‘₯) = √2π‘₯ βˆ’ 3
5-composition of function
If f and g are function such that the range of g is a subset of domain of f
then there is a function fog define as follow:
π‘“π‘œπ‘”(π‘₯) = 𝑓(𝑔(π‘₯))
8
𝑑(π‘“π‘œπ‘”) = {π‘₯: 𝑔(π‘₯) ∈ 𝐷𝑓 , π‘₯ ∈ 𝐷𝑔 }
𝑑(π‘”π‘œπ‘“) = {π‘₯: 𝑓(π‘₯) ∈ 𝐷𝑔 , π‘₯ ∈ 𝐷𝑓 }
In general
π‘“π‘œπ‘” β‰  π‘”π‘œπ‘“
Ex: 𝑓(π‘₯) = √π‘₯ , 𝑔(π‘₯) = π‘₯ 2 βˆ’ 1 find π‘“π‘œπ‘” , π‘”π‘œπ‘“ , π‘‘π‘“π‘œπ‘” , π‘‘π‘”π‘œπ‘“
Sol: π‘“π‘œπ‘”(π‘₯) = 𝑓(𝑔(π‘₯)) = 𝑓(π‘₯ 2 βˆ’ 1 ) = √π‘₯ 2 βˆ’ 1
π‘”π‘œπ‘“(π‘₯) = 𝑔(𝑓(π‘₯)) = 𝑔(√π‘₯ ) = (√π‘₯ )2 βˆ’ 1 = π‘₯ βˆ’ 1
𝑑𝑓 = π‘₯ β‰₯ 0 , 𝑑𝑔 = ℝ
𝑑(π‘“π‘œπ‘”) = {π‘₯: 𝑔(π‘₯) ∈ 𝐷𝑓 , π‘₯ ∈ 𝐷𝑔 } β‡’ π‘₯ ∈ 𝐷𝑔 = ℝ
𝑔(π‘₯) ∈ 𝐷𝑓 β‡’ π‘₯ 2 βˆ’ 1 β‰₯ 0 β‡’ (π‘₯ βˆ’ 1)(π‘₯ + 1) β‰₯ 0
1- X-1β‰₯ 0 ʌ π‘₯ + 1 β‰₯ 0
Xβ‰₯ 1 ʌ π‘₯ β‰₯ βˆ’1
2- X-1≀ 0
β†’ {π‘₯: π‘₯ β‰₯ 1}
ʌ π‘₯+1≀0
X≀ 1 ʌ π‘₯ ≀ βˆ’1
β†’ {π‘₯: π‘₯ ≀ βˆ’1}
𝑑(π‘“π‘œπ‘”) = {π‘₯: π‘₯ ≀ βˆ’1, π‘₯ β‰₯ 1} = ℝ\(βˆ’1,1)
𝑑(π‘”π‘œπ‘“) = {π‘₯: 𝑓(π‘₯) ∈ 𝐷𝑔 , π‘₯ ∈ 𝐷𝑓 }
= {π‘₯: π‘₯ β‰₯ 0 , π‘₯ ∈ ℝ} = [0, ∞)
H.W: find π‘“π‘œπ‘” , π‘”π‘œπ‘“ , π‘‘π‘“π‘œπ‘” , π‘‘π‘”π‘œπ‘“ of the following functions:
1- 𝑓(π‘₯) = √2 βˆ’ π‘₯ , 𝑔(π‘₯) = √π‘₯ βˆ’ 2
2- 𝑓(π‘₯) = √π‘₯ 2 βˆ’ 1 , 𝑔(π‘₯) = π‘₯ 2
3- 𝑓(π‘₯) = π‘₯ 2 + 1 , 𝑔(π‘₯) = √2π‘₯ βˆ’ 3
9
4 βˆ’ 𝑓(π‘₯) = |π‘₯| , 𝑔(π‘₯) = βˆ’π‘₯
5-𝑓(π‘₯) =
π‘₯
, 𝑔(π‘₯) =
π‘₯+2
π‘₯βˆ’1
π‘₯
Chapter three
1- Limits
The limits of f(x) as x approaches a is the no. L if given any∈ there
exists 𝛿 > 0 such that for all x, 0<|π‘₯ βˆ’ π‘Ž| < 𝛿implies|𝑓(π‘₯) βˆ’ 𝐿| <∈
Theorem:
π‘™π‘–π‘š
1-if f(x)=c c constant ,then π‘₯β†’π‘Ž
𝑓(π‘₯) = 𝑐
1-if
i)
ii)
iii)
iv)
π‘™π‘–π‘š
π‘₯β†’π‘Ž
π‘™π‘–π‘š
and π‘₯β†’π‘Ž
𝑔(π‘₯) = 𝑀 ,then :
𝑓(π‘₯) = 𝐿
π‘™π‘–π‘š
π‘₯β†’π‘Ž
π‘™π‘–π‘š
π‘₯β†’π‘Ž
π‘™π‘–π‘š
π‘₯β†’π‘Ž
𝐾𝑓(π‘₯) = 𝐾𝐿 such that K is constant
π‘™π‘–π‘š
π‘™π‘–π‘š
𝑓(π‘₯) βˆ“ π‘₯β†’π‘Ž
𝑔(π‘₯) = 𝐿 βˆ“ 𝑀
(𝑓(π‘₯) βˆ“ 𝑔(π‘₯)) = π‘₯β†’π‘Ž
π‘™π‘–π‘š
π‘™π‘–π‘š
𝑓(π‘₯) . π‘₯β†’π‘Ž
𝑔(π‘₯) = 𝐿 . 𝑀
(𝑓(π‘₯) . 𝑔(π‘₯)) = π‘₯β†’π‘Ž
π‘™π‘–π‘š 𝑓(π‘₯)
π‘₯β†’π‘Ž. 𝑔(π‘₯)
=
π‘™π‘–π‘š
π‘₯β†’π‘Ž
π‘™π‘–π‘š
π‘₯β†’π‘Ž
𝑓(π‘₯)
𝑔(π‘₯)
=
𝐿
𝑀
,M≠ 0
𝑛
𝑛
π‘™π‘–π‘š
π‘™π‘–π‘š 𝑛 (π‘₯)
V) π‘₯β†’π‘Ž
= √ π‘₯β†’π‘Ž
𝑓(π‘₯) = √𝐿
βˆšπ‘“
π‘™π‘–π‘š
π‘™π‘–π‘š
VI) π‘₯β†’π‘Ž
(𝑓(π‘₯))𝑛 = ( π‘₯β†’π‘Ž
𝑓(π‘₯))𝑛 = 𝐿𝑛 such that K is constant
π‘™π‘–π‘š
VII) π‘₯β†’0
.
sin π‘₯
π‘™π‘–π‘š
VIII) π‘₯β†’0
.
COS π‘₯
π‘₯
=1
π‘₯
=∞
1
π‘™π‘–π‘š
IX) π‘₯β†’0
. =∞
π‘₯
Limits of polynomials
𝑖𝑓 𝑓(π‘₯) = π‘Žπ‘› π‘₯ 𝑛 + π‘Žπ‘›βˆ’1 π‘₯ π‘›βˆ’1 + β‹― + π‘Ž0 is any polynomial function
π‘™π‘–π‘š
π‘₯→𝑐
𝑓(π‘₯) = 𝑓(𝑐) = π‘Žπ‘› 𝑐 𝑛 + π‘Žπ‘›βˆ’1 𝑐 π‘›βˆ’1 + β‹― + π‘Ž0
Limits of quotient of poly
10
If f(x) and g(x) are polynomials ,then
π’π’Šπ’Ž 𝒇(𝒙)
𝒙→𝒂. π’ˆ(𝒙)
=
𝒇(𝒄)
π’ˆ(𝒄)
,
Ex: find the limit ,if it exist
1-
3
π‘™π‘–π‘š π‘₯ βˆ’1
.
π‘₯β†’1 π‘₯βˆ’1
2-
π‘™π‘–π‘š
= π‘₯β†’1
.
π‘™π‘–π‘š √π‘₯+9βˆ’3
π‘₯β†’0.
π‘₯
(π‘₯βˆ’1)(π‘₯ 2 +π‘₯+1)
π‘™π‘–π‘š
= π‘₯β†’0
.
(π‘₯βˆ’1)
π‘™π‘–π‘š (π‘₯ 2
= π‘₯β†’1
.
+ π‘₯ + 1) = 3 ,
√π‘₯+9βˆ’3 √π‘₯+9+3
.
π‘₯
√π‘₯+9+3
π‘™π‘–π‘š
= π‘₯β†’0
.
π‘₯+9βˆ’9
π‘₯(√π‘₯+9+3)
=
1
6
,
H.W:
4
2
π‘™π‘–π‘š π‘₯ βˆ’2π‘₯ βˆ’8
1- π‘₯β†’2
. 2
π‘₯ βˆ’4
π‘™π‘–π‘š
4- π‘₯β†’π‘Ž
.
√π‘₯ 2 +1βˆ’βˆšπ‘Ž2 +1
π‘™π‘–π‘š
7- π‘₯β†’2
.
π‘₯βˆ’π‘Ž
(π‘₯ 2 βˆ’4)
√π‘₯βˆ’2
3
2
π‘™π‘–π‘š (1+π‘₯)2 βˆ’1
- π‘₯β†’0
.
π‘₯
1
π‘™π‘–π‘š
5- π‘₯β†’0
. (
1
π‘₯ π‘₯+2
π‘™π‘–π‘š
8- π‘₯β†’0
.
tan π‘₯
π‘₯
1
βˆ’ )
2
π‘™π‘–π‘š
3- π‘₯β†’3
.
√3π‘₯βˆ’3
π‘₯βˆ’3
π‘™π‘–π‘š
6- π‘₯β†’0
.
𝑠𝑖𝑛 3π‘₯
π‘™π‘–π‘š
9- β„Žβ†’0
.
π‘₯
√π‘₯+β„Žβˆ’βˆšπ‘₯
β„Ž
One -sided limits(right-hand limits and left-hand limits)
Def 1: the limits of the fun. f(x) as x approaches a from the right equals L if
given any ∈> 0 , βˆƒ π‘Ž, 𝛿 > 0 such that for all x,
π‘™π‘–π‘š
π‘Ž < π‘₯ < π‘Ž + 𝛿 Implies |𝑓(π‘₯) βˆ’ 𝐿| <∈ denoted by π‘₯β†’π‘Ž
+ 𝑓(π‘₯) = 𝐿
Def 2: the limits of the fun. f(x) as x approaches a from the left equals L if
given any ∈> 0 , βˆƒ π‘Ž, 𝛿 > 0 such that for all x,
π‘™π‘–π‘š
βˆ’ 𝑓(π‘₯) = 𝐿
π‘Ž βˆ’ 𝛿 < π‘₯ < π‘Ž Implies |𝑓(π‘₯) βˆ’ 𝐿| <∈ denoted by π‘₯β†’π‘Ž
Note
A function f(x) has a limit at appoint a iff the right –hand and lefthand limits at exist and are equal
π‘™π‘–π‘š
π‘₯β†’π‘Ž
11
π‘™π‘–π‘š
π‘™π‘–π‘š
𝑓(π‘₯) = 𝐿 ↔ π‘₯β†’π‘Ž
+ 𝑓(π‘₯) = 𝐿 and π‘₯β†’π‘Ž βˆ’ 𝑓(π‘₯)
Ex: find the limit of the function
π‘₯ + 1, π‘₯ β‰₯ 1
𝑓(π‘₯) = { 2
}
π‘₯ βˆ’ 1, π‘₯ < 1
as 1. π‘₯ β†’ 5
2. π‘₯ β†’ βˆ’5
π‘™π‘–π‘š
sol: 1. π‘₯β†’5
𝑓(π‘₯) =
π‘™π‘–π‘š
π‘₯β†’5
π‘™π‘–π‘š
2. π‘₯β†’βˆ’5
𝑓(π‘₯) =
π‘™π‘–π‘š
b/ π‘₯β†’1βˆ’
𝑓(π‘₯) =
∴
π‘™π‘–π‘š
π‘₯β†’1+
𝑓(π‘₯) β‰ 
(π‘₯ + 1) = 6
π‘™π‘–π‘š
π‘₯β†’βˆ’5
π‘™π‘–π‘š
3. a/ π‘₯β†’1+
𝑓(π‘₯) =
3. π‘₯ β†’ 1
(π‘₯ 2 βˆ’ 1) = 24
π‘™π‘–π‘š
π‘₯β†’1+
π‘™π‘–π‘š
π‘₯β†’1βˆ’
π‘™π‘–π‘š
π‘₯β†’1+
(π‘₯ + 1) = 2
(π‘₯ 2 βˆ’ 1) = 0
𝑓(π‘₯)
H.w: find the limit of the function
π‘₯ 2,
π‘₯β‰₯0
3
1 βˆ’ 𝑓(π‘₯) = { π‘₯ , βˆ’ 1 < π‘₯ < 0 }
π‘₯+1,
π‘₯ ≀ βˆ’1
If 1. π‘₯ β†’ 3
2. π‘₯ β†’ βˆ’
1
2
3. π‘₯ β†’ βˆ’5
4. π‘₯ β†’ 0
5. π‘₯ β†’ βˆ’1
π‘₯ 2 βˆ’ 1,
π‘₯β‰₯1
2 βˆ’ 𝑓(π‘₯) = {π‘₯ + 1, 0 ≀ π‘₯ < 1}
π‘₯3 βˆ’ 1 ,
π‘₯<0
If 1. π‘₯ β†’ 1
π‘™π‘–π‘š
3- 𝑓(π‘₯) = π‘₯β†’0
.
2. π‘₯ β†’
1
2
3. π‘₯ β†’ βˆ’6
4. π‘₯ β†’ 0
5. π‘₯ β†’ 8
|π‘₯|
π‘₯
Limits at infinity (limits as 𝒙 β†’ ∞ 𝒐𝒓 𝒙 β†’ βˆ’βˆž )
Def 1: the limits of the fun. f(x) as x approaches infinity is the no. L
π‘™π‘–π‘š
π‘₯β†’βˆž 𝑓(π‘₯) = 𝐿 if given any ∈> 0 , βˆƒ 𝑀 > 0 such that for all x,
𝑀 < π‘₯ Implies |𝑓(π‘₯) βˆ’ 𝐿| <∈
12
Def 2: the limits of the fun. f(x) as x approaches negative infinity is the no. L
π‘™π‘–π‘š
π‘₯β†’βˆ’βˆž 𝑓(π‘₯) = 𝐿 if given any ∈> 0 , βˆƒ 𝑁 < 0 such that for all x,
π‘₯ < 𝑁 Implies |𝑓(π‘₯) βˆ’ 𝐿| <∈
Theorem:
1-
if f(x) =k for any no. k
π‘™π‘–π‘š
π‘₯β†’βˆž
3- if
π‘™π‘–π‘š
π‘₯β†’βˆž
i)
ii)
iii)
iv)
v)
vi)
vii)
π‘™π‘–π‘š
π‘₯β†’βˆ’βˆž
π‘˜=
π‘™π‘–π‘š
and π‘₯β†’βˆ’βˆž
𝑔(π‘₯) = 𝑀 ,then :
𝑓(π‘₯) = 𝐿
π‘™π‘–π‘š
π‘₯β†’βˆž
π‘™π‘–π‘š
π‘₯β†’βˆž
π‘˜ = π‘˜ such that k is constant
(𝑓(π‘₯) βˆ“ 𝑔(π‘₯)) =
(𝑓(π‘₯) . 𝑔(π‘₯)) =
π‘™π‘–π‘š 𝑓(π‘₯)
π‘₯β†’βˆž. 𝑔(π‘₯)
=
π‘™π‘–π‘š
π‘₯β†’βˆž
π‘™π‘–π‘š
π‘₯β†’βˆž
𝑓(π‘₯)
𝑔(π‘₯)
π‘™π‘–π‘š
π‘₯β†’βˆž 𝑓(π‘₯)
π‘™π‘–π‘š
π‘₯β†’βˆž
𝐿
=
𝑀
𝑓(π‘₯) .
π‘™π‘–π‘š
βˆ“ π‘₯β†’βˆž
𝑔(π‘₯) = 𝐿 βˆ“ 𝑀
π‘™π‘–π‘š
π‘₯β†’βˆž
𝑔(π‘₯) = 𝐿 . 𝑀
,M≠ 0
π‘™π‘–π‘š sin π‘₯
π‘₯β†’βˆž. π‘₯ = 0
π‘™π‘–π‘š cos π‘₯
π‘₯β†’βˆž. π‘₯ = 0
π‘™π‘–π‘š 1
π‘₯β†’βˆž. π‘₯
=0
Ex: find the limits of:
1.
2.
π‘™π‘–π‘š π‘₯
π‘₯β†’βˆž. 7π‘₯+4
π‘₯
π‘™π‘–π‘š
= π‘₯β†’βˆž
. 7π‘₯π‘₯ 4
+
π‘₯
2
π‘™π‘–π‘š 2π‘₯ +2π‘₯βˆ’3
.
π‘₯β†’βˆž π‘₯ 2 +4π‘₯+4
π‘™π‘–π‘š
= π‘₯β†’βˆž
.
π‘₯
π‘™π‘–π‘š
= π‘₯β†’βˆž
.
3π‘₯ 4 βˆ’π‘₯ 2
π‘₯ 4 βˆ’1
π‘™π‘–π‘š
2- π‘₯β†’βˆž
. (2 +
π‘™π‘–π‘š
3- π‘₯β†’βˆž
.
13
sin π‘₯
π‘₯
)
3π‘₯ 2 βˆ’5π‘₯ 2 +π‘₯
π‘₯4
3
4
4
1+ + 2
π‘₯ π‘₯
H.W: Ex: find the limits of:
π‘™π‘–π‘š √
1- π‘₯β†’βˆž
.
2
2+ βˆ’ 2
π‘₯ π‘₯
1
4
7+
π‘₯
=
=
1
7
2 3
π‘™π‘–π‘š
π‘₯β†’βˆž.(2+π‘₯βˆ’π‘₯2 )
4 4
π‘™π‘–π‘š
π‘₯β†’βˆž.(1+π‘₯+π‘₯2 )
=2
Infinite limits
Def 1: the limits of the fun. f(x) as x approaches a , π‘Ž ∈ 𝐷𝑓 such that is the
π‘™π‘–π‘š
infinity π‘₯β†’π‘Ž
𝑓(π‘₯) = ∞ if given any 𝑀 > 0 , βˆƒ 𝛿 > 0 such that for all x, S.T
βˆ€ π‘₯ ∈ 𝐷𝑓 , 0 < |π‘₯ βˆ’ π‘Ž| < 𝛿 implies f(x)>M
Def 2: the limits of the fun. f(x) as x approaches a , π‘Ž ∈ 𝐷𝑓 such that is the
π‘™π‘–π‘š
-infinity π‘₯β†’π‘Ž
𝑓(π‘₯) = βˆ’βˆž if given any 𝑀 < 0 , βˆƒ 𝛿 > 0 such that for all x,
s.t βˆ€ π‘₯ ∈ 𝐷𝑓 , 0 < |π‘₯ βˆ’ π‘Ž| < 𝛿 implies f(x)<M
Ex: find the limits
π‘™π‘–π‘š
1- π‘₯β†’2+
.
2.
1
=
π‘₯ 2 βˆ’4
1
0
3
π‘™π‘–π‘š 2π‘₯ +2π‘₯βˆ’1
π‘₯β†’βˆž. π‘₯ 2 βˆ’5π‘₯+2
=∞
2
1
2+ 2 βˆ’ 3
π‘™π‘–π‘š
= π‘₯β†’βˆž
. 1 π‘₯5 π‘₯2
βˆ’ 2+ 3
π‘₯ π‘₯
2
= =∞
π‘₯
0
1
π‘™π‘–π‘š
3- π‘₯β†’0+
. =∞
π‘₯
1
π‘™π‘–π‘š
3- π‘₯β†’0βˆ’
. = βˆ’βˆž
π‘₯
H.W: Ex: find the limits
π‘™π‘–π‘š
1- π‘₯β†’βˆž
.
π‘₯ 2 βˆ’π‘₯
π‘™π‘–π‘š
2- π‘₯β†’βˆž
.
π‘₯+1
π‘₯5
3π‘₯ 4 +π‘₯ 3 βˆ’π‘₯+1
2-continuity
Def1: the fun. y=f(x) is continuous at x=c iff all three of the follow
statements are true:
1- 𝑓 (c) is exists (𝑐 𝑖𝑠 π‘‘β„Žπ‘’ π‘‘π‘œπ‘šπ‘Žπ‘–π‘› π‘œπ‘“ 𝑓)
π‘™π‘–π‘š
2- π‘₯→𝑐
𝑓(π‘₯) is exists (f has a limit as xβ†’ 𝑐)
π‘™π‘–π‘š
3- π‘₯→𝑐 𝑓(π‘₯) = 𝑓(𝑐) (the limit equals the fun. value)
sin π‘₯
Ex:𝑓(π‘₯) = {
14
,π‘₯ β‰  0
} is f cont. at x=0
1, π‘₯ =0
π‘₯
Sol:
1-f(0)=1 is exist
π‘™π‘–π‘š sin π‘₯
π‘₯β†’π‘Ž π‘₯
π‘™π‘–π‘š
2- π‘₯β†’0
𝑓(π‘₯) =
∴
π‘™π‘–π‘š
π‘₯β†’0
= 1 𝑖𝑠 𝑒π‘₯𝑖𝑠𝑑 π‘Žπ‘  π‘₯ β†’ 0
𝑓(π‘₯) = 𝑓(0) = 1
∴ 𝑓 is cont.
Def2: discontinuity at appoint
Is a fun. F is not cont. at a point c, we say that f is discontinuous at c and
call c appoint of discontinuity of f.
1
, π‘₯ β‰  βˆ’1
Ex: 𝑓(π‘₯) = { π‘₯+1
} is f cont. at x=-1
1 , π‘₯ = βˆ’1
Sol:
1- f(-1)=1
2-
π‘™π‘–π‘š
π‘₯β†’βˆ’1
is exist
𝑓(π‘₯) =
π‘™π‘–π‘š 1
π‘₯β†’βˆ’1 π‘₯+1
π‘›π‘œπ‘‘ 𝑒π‘₯𝑖𝑠𝑑 π‘Žπ‘  π‘₯ β†’ βˆ’1
∴ 𝑓 is not cont. at x=-1
H.w:
𝑋 2 +π‘‹βˆ’6
1- 𝑓(π‘₯) = {5
4
π‘₯
,
2- 𝑓(π‘₯) = {
π‘₯=2
15
} is f cont. at x=2
π‘₯2 βˆ’ 1 , π‘₯ β‰₯ 0
} is f cont. at x=0
π‘₯
, π‘₯<0
𝑋 2 βˆ’9
3-1- 𝑓(π‘₯) = {
, π‘₯β‰ 2
, π‘₯ β‰  βˆ’3
} is f cont. at x=-3
βˆ’6,
= βˆ’3
π‘₯+3
𝑋 2 βˆ’4
4- 𝑓(π‘₯) = { π‘₯βˆ’2
4,
, π‘₯β‰ 2
} is f cont. at x=2
π‘₯=2
|π‘₯ + 1| + 2 , π‘₯ β‰  βˆ’1
5- 𝑓(π‘₯) = {
} is f cont. at x=-1
0,
π‘₯ = βˆ’1
Chapter 4
The derivative of a function
the derivative of afun. 𝑓 is the fun.𝑓 αΏ½ whose value at is defined by the eq.
π‘™π‘–π‘š
𝑓 αΏ½ (x) = βˆ†π‘₯β†’0
.
𝑓(π‘₯+βˆ†π‘₯)βˆ’π‘“(π‘₯)
βˆ†π‘₯
whenever the limit exist
Ex: find the definition of derivative to find the derivative of the fun.
𝑓(π‘₯) = π‘₯ 2
π‘™π‘–π‘š
Sol: 𝑓 αΏ½ (x) = βˆ†π‘₯β†’0
.
𝑓(π‘₯+βˆ†π‘₯)βˆ’π‘“(π‘₯)
βˆ†π‘₯
π‘™π‘–π‘š
= βˆ†π‘₯β†’0
.
(π‘₯+βˆ†π‘₯)2 βˆ’π‘₯ 2
βˆ†π‘₯
==
2
2
2
π‘™π‘–π‘š π‘₯ βˆ’2π‘₯βˆ†π‘₯+(βˆ†π‘₯) βˆ’π‘₯
.
βˆ†π‘₯β†’0
βˆ†π‘₯
π‘™π‘–π‘š
= βˆ†π‘₯β†’0
.
βˆ†π‘₯(2π‘₯+βˆ†π‘₯)
βˆ†π‘₯
= 2x
H.W: find the definition of derivative to find the derivative of the
functions:
1- 𝑓(π‘₯) = 2π‘₯ βˆ’ 1
2- 𝑓(π‘₯) = (π‘₯ + 1)2
4- 𝑓(π‘₯) = √π‘₯
5- 𝑓(π‘₯) =
π‘₯
3- 𝑓(π‘₯) = π‘₯ 2 βˆ’ 1
6- 𝑓(π‘₯) = π‘₯ 3
π‘₯βˆ’9
Some rules of derivative
1- If 𝑦 = 𝑓(π‘₯) = 𝑐, where c is constant then
𝑑𝑦
𝑑π‘₯
, 𝑓 αΏ½ (x)=0
2- Power rule for positive integer (power of x) 𝑦 = π‘₯ 𝑛 if n is positive
integer then
16
𝑑
𝑑π‘₯
(π‘₯ 𝑛 ) = 𝑛π‘₯ π‘›βˆ’1
3- The sum rule
𝑑
𝑑π‘₯
𝑑𝑒
(𝑒 + 𝑣) =
𝑑π‘₯
𝑑𝑣
+
= 𝑒´ + 𝑣 αΏ½
𝑑π‘₯
4-the constant multiple rule
𝑑
𝑑π‘₯
(𝑐𝑓(π‘₯)) = 𝑐
𝑑 𝑓(π‘₯)
= 𝑐 𝑓 αΏ½ (x)
𝑑π‘₯
5-the product rule
𝑑
𝑑π‘₯
𝑑𝑣
(𝑒. 𝑣) = 𝑒
+𝑣
𝑑π‘₯
𝑑𝑒
𝑑π‘₯
= 𝑒´ . 𝑣 αΏ½
6-Positive integer power of adiff. fun. if u is adiff. Fun.n is power of u
then 𝑒𝑛
𝑑
𝑑π‘₯
(𝑒𝑛 ) = π‘›π‘’π‘›βˆ’1
𝑑𝑒
𝑑π‘₯
7-The quotient rule
𝑑
𝑑π‘₯
𝑒
(𝑣 ) =
𝑑𝑒
𝑑𝑣
βˆ’ 𝑒
𝑑π‘₯
𝑑π‘₯
𝑣2
𝑣
8-negative integer power of adiff. fun. if u is adiff.
𝑑
𝑑π‘₯
(𝑒𝑛 ) = π‘›π‘’π‘›βˆ’1
𝑑𝑒
𝑑π‘₯
Ex: find the derivative of the function:
1- 𝑓(π‘₯) = 5 β‡’
2- 𝑓(π‘₯) = π‘₯ 6 β‡’
𝑑
𝑑π‘₯
𝑑
𝑓(π‘₯) =
𝑑π‘₯
3
𝑓(π‘₯) =
3- 𝑓(π‘₯) = π‘₯ 6 βˆ“ π‘₯ β‡’
4- 𝑓(π‘₯) = 3π‘₯ 5 β‡’
𝑑
𝑑π‘₯
𝑑
𝑑π‘₯
𝑑
(5) = 0
(π‘₯ 6 ) = 6π‘₯ 5
𝑑π‘₯
𝑑
(π‘₯ 6 βˆ“
𝑑π‘₯
𝑑
𝑓(π‘₯) =
𝑑π‘₯
π‘₯ 3) =
𝑑
𝑑π‘₯
(π‘₯ 6 ) βˆ“
𝑑
𝑑π‘₯
(π‘₯ 3 ) = 6π‘₯ 5 βˆ“ 3π‘₯ 2
(3π‘₯ 5 ) = 15π‘₯ 4
5- 𝑓(π‘₯) = (π‘₯ 2 + 2)(π‘₯ 3 + 3π‘₯ + 1) β‡’
𝑑
𝑑π‘₯
𝑓(π‘₯) = (π‘₯ 2 + 2)(3π‘₯ 2 + 3) + (π‘₯ 3 + 3π‘₯ + 1). 2π‘₯
π‘₯
6- 𝑓(π‘₯) = (π‘₯ 3 βˆ’ )6 β‡’
2
17
𝑑
π‘₯ 5
1
𝑓(π‘₯) = 6 (π‘₯ 3 βˆ’ ) ( 3π‘₯ 2 βˆ’ )
𝑑π‘₯
2
2
7- 𝑓(π‘₯) =
π‘₯ 2 βˆ’1
π‘₯ 4 +1
(π‘₯ 4
β‡’
𝑑
π‘₯ 2 βˆ’1
)=
(
𝑑
𝑑
(π‘₯ 2 βˆ’1)βˆ’(π‘₯ 2 βˆ’1). (π‘₯ 4 +1)
𝑑π‘₯
𝑑π‘₯
(π‘₯ 4 +1)2
(π‘₯ 4 +1).
𝑑π‘₯ π‘₯ 4 +1
+ 1). (2π‘₯) βˆ’ [(π‘₯ 2 βˆ’ 1). 4π‘₯ 3 ] 2π‘₯ 5 + 2π‘₯ βˆ’ [4π‘₯ 5 βˆ’ 4π‘₯ 3 ]
=
=
(π‘₯ 4 + 1)2
(π‘₯ 4 + 1)2
2π‘₯ 5 + 2π‘₯ βˆ’ 4π‘₯ 5 + 4π‘₯ 3 ] βˆ’2π‘₯ 5 + 4π‘₯ 3 + 2π‘₯
=
=
(π‘₯ 4 + 1)2
(π‘₯ 4 + 1)2
8- 𝑓(π‘₯) = (2π‘₯ 2 βˆ’ 5π‘₯ βˆ’2 )βˆ’5 β‡’
𝑑
𝑑π‘₯
𝑓(π‘₯) = βˆ’5(2π‘₯ 2 βˆ’ 5π‘₯ βˆ’2 )βˆ’6 . (4π‘₯ +
Derivative of trigonometric function
1-if 𝑓(π‘₯) = sin π‘₯ β‡’ 𝑓´(π‘₯) = cos π‘₯
2-if 𝑓(π‘₯) = cos π‘₯ β‡’ 𝑓´(π‘₯) = βˆ’sin π‘₯
3-if 𝑓(π‘₯) = tan π‘₯ β‡’ 𝑓´(π‘₯) = 𝑠𝑒𝑐 2 π‘₯
4-if 𝑓(π‘₯) = cot π‘₯ β‡’ 𝑓´(π‘₯) = βˆ’π‘π‘ π‘ 2 π‘₯
5-if 𝑓(π‘₯) = sec π‘₯ β‡’ 𝑓´(π‘₯) = sec π‘₯ tan π‘₯
6-if 𝑓(π‘₯) = csc π‘₯ β‡’ 𝑓´(π‘₯) = βˆ’csc π‘₯ π‘π‘œπ‘‘π‘₯
7-if 𝑓(π‘₯) = 𝑒 π‘₯ β‡’ 𝑓´(π‘₯) = 𝑒 π‘₯
8-if 𝑓(π‘₯) = ln π‘₯ β‡’ 𝑓´(π‘₯) =
1
π‘₯
. 𝑓´(π‘₯)
Note:
12-
𝑑
𝑑π‘₯
𝑑
𝑑π‘₯
(sin 𝑒(π‘₯)) = cos 𝑒(π‘₯). 𝑒´ (π‘₯)
(cos 𝑒(π‘₯)) = βˆ’sin 𝑒(π‘₯). 𝑒´ (π‘₯)
3βˆ’
4-
18
𝑑
𝑑π‘₯
𝑑
𝑑π‘₯
(tan 𝑒(π‘₯)) = 𝑠𝑒𝑐 2 𝑒(π‘₯). 𝑒´ (π‘₯)
(cot 𝑒(π‘₯)) = βˆ’ 𝑐𝑠𝑐 2 𝑒(π‘₯). 𝑒´ (π‘₯)
10 π‘₯ βˆ’3
56-
𝑑
𝑑π‘₯
𝑑
𝑑π‘₯
(sec 𝑒(π‘₯)) = sec 𝑒(π‘₯) tan 𝑒(π‘₯) . 𝑒´ (π‘₯)
(csc 𝑒(π‘₯)) = βˆ’π‘π‘ π‘π‘’(π‘₯) cot(𝑒(π‘₯)). 𝑒´ (π‘₯)
Ex: find the derivative of the function:
1- 𝑓(π‘₯) = sin π‘₯ 3 β‡’ 𝑓´(π‘₯) = cos π‘₯ 3 . 3π‘₯ 2 = 3π‘₯ 2 cos π‘₯ 3
2𝑓(π‘₯) = cos(5π‘₯ 2 + 2)3 + cot(1 βˆ’ π‘₯ 2 ) β‡’
𝑓´(π‘₯) =
βˆ’π‘ π‘–π‘›(5π‘₯ 2 + 2)3 . 3(5π‘₯ 2 + 2)2 . 10 π‘₯ βˆ’ csc(1 βˆ’ π‘₯ 2 ) cot(1 βˆ’
π‘₯ 2 ) . βˆ’2π‘₯
3- 𝑓(π‘₯) = tan(π‘₯ 2 + 1) β‡’ 𝑓´(π‘₯) = 𝑠𝑒𝑐 2 (π‘₯ 2 + 1). 2π‘₯
𝟏
𝟏
𝟏
4- 𝒇(𝒙) = (πŸ‘ βˆ’ 𝐬𝐞𝐜(πŸ“π’™))𝟐 β‡’ 𝒇´(𝒙) = 𝟐 (πŸ‘ βˆ’ 𝐬𝐞𝐜(πŸ“π’™))βˆ’πŸ . 𝐬𝐞𝐜(πŸ“π’™) 𝐭𝐚𝐧(πŸ“π’™) . πŸ“
5-𝑓(π‘₯) = 𝑐𝑠𝑐 2 (2π‘₯) + 4π‘₯ 2 𝑠𝑖𝑛π‘₯
𝑓´(π‘₯) = 2 csc(2π‘₯) . βˆ’ csc(2π‘₯) cot(2π‘₯) . 2 + 4(π‘₯ 2 π‘π‘œπ‘ π‘₯ + 𝑠𝑖𝑛π‘₯. 2π‘₯)
𝑓´(π‘₯) = βˆ’2𝑐𝑠𝑐 2 (2π‘₯) cot(2π‘₯) . 2 + 4(π‘₯ 2 π‘π‘œπ‘ π‘₯ + 2π‘₯ 𝑠𝑖𝑛π‘₯)
6- = ln(π‘₯ 2 βˆ’ 8) β‡’ 𝑓´(π‘₯) =
1
π‘₯ 2 βˆ’8
.2π‘₯ =
2π‘₯
π‘₯ 2 βˆ’8
7- 𝑓(π‘₯) = 𝑒 βˆ’2π‘₯ β‡’ 𝑓´(π‘₯) = βˆ’2𝑒 βˆ’2π‘₯
H.W: find the derivative of the function:
𝟏
1- 𝒇(𝒙) = π‘‘π‘Žπ‘›3 (COS 5π‘₯3 )𝟐
3- 𝑓(π‘₯) =
19
(π‘ π‘–π‘›βˆšπ‘₯)3
√π‘₯
2- 𝒇(𝒙) = cos(π‘₯ 4 + πŸ‘π‘₯ 3 + π‘₯ 2 )πŸ• + csc(tanπ‘₯ 3 )
4- 𝑓(π‘₯) = π‘₯ 3 sin(2π‘₯ 2 + 3)