The power of q Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV The power of q Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV [email protected] Even parts distinct Partitions with even parts distinct Let ped(n) be the number of partitions of n with even parts distinct. For example, if n = 5, the partitions are 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, and ped(5) = 6. The generating function is X ped(n)q n = n≥0 (−q 2 ; q 2 )∞ = (−q; q)∞ (−q 2 ; q 2 )∞ . (q; q 2 )∞ It is also true that X ped(n)q n = n≥0 = (q 2 ; q 2 )∞ (q 4 ; q 4 )∞ (q 4 ; q 4 )∞ = (q; q)∞ (q 2 ; q 2 )∞ (q; q)∞ 1 (q, q 2 , q 3 ; q 4 )∞ The power of q Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV Even parts distinct The power of q so ped(n) = p{1,2,3;4} (n) the number of partitions of n into parts not multiples of 4. (“4–regular partitions”) In the case n = 5, the relevant partitions are 5, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 and p{1,2,3;4} (5) = 6 = ped(5). James Sellers and I discovered that ped(n) has some nice arithmetic properties. I shall show that ped(n) is divisible by 12 for (at least) one in nine values of n. Indeed, I will prove the Ramanujan–like identity, X n≥0 ped(9n + 7)q n = 12 Y (1 − q 2n )4 (1 − q 3n )6 (1 − q 4n ) . (1 − q n )11 n≥1 Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV Even parts distinct The power of q X ped(n)q n = (−q; q)∞ (−q 2 ; q 2 )∞ n≥0 (−q 3 ; q 3 )∞ (−q, −q 2 , q 3 ; q 3 )∞ (q 3 ; q 3 )∞ (−q 6 ; q 6 )∞ × 6 6 (−q 2 , −q 4 , q 6 ; q 6 )∞ (q ; q )∞ ∞ (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ X 2 2 = q (3m +m)/2+(3n +n) . 3 3 2 6 6 2 (q ; q )∞ (q ; q )∞ m,n=−∞ = Split the sum according to the residue modulo 3 of m + 2n. If m + 2n ≡ 0 let m = r − 2t, n = r + t, if m + 2n ≡ 1, let m = r + 1 − 2t, n = r + t, if m + 2n ≡ −1, let m = r − 1 − 2t, n = r + t and we obtain Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV Even parts distinct The power of q X n≥0 ped(n)q n = Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV (q 12 ; q 12 )∞ (q 3 ; q 3 )2∞ (q 6 ; q 6 )∞ ∞ X × q (9r r ,t=−∞ ∞ X 2 2 +3r )/2+9t 2 q (9r +q Even parts distinct 2 +9r )/2+(9t 2 −6t) r ,t=−∞ +q ∞ X r ,t=−∞ ! q (9r 2 −3r )/2+(9t 2 +6t) The power of q X n≥0 Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV (q 12 ; q 12 )∞ ped(n)q = 3 3 2 6 6 (q ; q )∞ (q ; q )∞ n × (−q 3 , −q 6 , q 9 ; q 9 )∞ (−q 9 , −q 9 , q 18 ; q 18 )∞ Even parts distinct +q(−q 3 , −q 6 , q 9 ; q 9 )∞ (−q 3 , −q 15 , q 18 ; q 18 )∞ +2q 2 (−q 9 , −q 9 , q 9 ; q 9 )∞ (−q 3 , −q 15 , q 18 ; q 18 )∞ f12 = 2 f3 f6 = 5 2 2 f6 f92 f18 f6 f92 f62 f9 f36 2 f18 f6 f9 f36 + 2q + q 2 f3 f18 f92 f36 f3 f18 f3 f12 f18 f9 f2 f12 f18 4 f12 f18 f18 f36 f62 f93 f36 + q + 2q 2 3 . 3 2 4 2 f3 f36 f3 f18 f3 The power of q It follows that X ped(3n)q n = n≥0 X ped(3n + 1)q n = n≥0 X f22 f33 f12 , f14 f62 ped(3n + 2)q n = 2 n≥0 Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV f4 f64 , 2 f13 f12 Even parts distinct f2 f6 f12 . f13 In particular, X f 3 f12 f 2 φ(−q 3 )ψ(−q 3 ) , ped(3n + 1)q n = 3 2 · 24 = φ(−q)2 f6 f1 n≥0 where φ(−q) = ∞ X 2 (−1)n q n = (q, q, q 2 ; q 2 )∞ = −∞ ψ(−q) = ∞ X −∞ (−1)n q 2n 2 +n f12 , f2 = (q, q 3 , q 4 ; q 4 )∞ = f1 f4 . f2 The power of q So X (−1)n ped(3n + 1)q n = φ(q 3 )ψ(q 3 ) φ(q)2 n≥0 . Now, φ(ωq)φ(ω 2 q) 1 = . φ(q) φ(q)φ(ωq)φ(ω 2 q) The denominator, φ(q)φ(ωq)φ(ω 2 q) = φ(q 3 )4 . φ(q 9 ) This relies on the facts that φ(q) = E (q 2 )5 E (q)2 E (q 4 )2 and E (q)E (ωq)E (ω 2 q) = E (q 3 )4 . E (q 9 ) (We saw a similar calculation when we proved RMBI.) Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV Even parts distinct The power of q Also, φ(q) = φ(q 9 ) + 2qX (q 3 ), Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV where X (q) = (−q, −q 5 , q 6 ; q 6 )∞ . Even parts distinct So the numerator, φ(ωq)φ(ω 2 q) = (φ(q 9 ) + 2ωqX (q 3 ))(φ(q 9 ) + 2ω 2 qX (q 3 )) = φ(q 9 )2 − 2qφ(q 9 )X (q 3 ) + 4q 2 X (q 3 )2 . It follows that φ(q 9 ) (−1) ped(3n + 1)q = φ(q )ψ(q ) φ(q 3 )4 n≥0 2 × φ(q 9 )2 − 2qφ(q 9 )X (q 3 ) + 4q 2 X (q 3 )2 X n n 3 3 2 It follows that X φ(q 3 )2 (−1)n ped(9n + 7)q n = φ(q)ψ(q) 12φ(q 3 )2 X (q)2 φ(q)8 n≥0 = 12 φ(q 3 )4 ψ(q)X (q)2 φ(q)7 and X ped(9n + 7)q n n≥0 φ(−q 3 )4 ψ(−q)X (−q)2 φ(−q)7 7 2 4 2 2 f2 f3 f1 f4 f1 f6 = 12 2 f6 f2 f2 f3 f1 = 12 = 12 as claimed earlier. f23 f36 f4 , f111 The power of q Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV Even parts distinct We can also show that for α ≥ 1, modulo 3, X 32α − 1 n 2α (−1) ped 3 n + q n ≡ ψ(q)φ(q 3 ), 8 n≥0 X n≥0 n 2α+1 (−1) ped 3 32α+2 − 1 n+ 8 q n ≡ φ(q)ψ(q 3 ). and that for α ≥ 1, 17 × 32α − 1 2α+1 ped 3 n+ ≡ 0 (mod 3), 8 19 × 32α+1 − 1 ped 32α+2 n + ≡ 0 (mod 3). 8 The power of q Michael D. Hirschhorn A course of lectures presented at Wits, July 2014 Part IV Even parts distinct
© Copyright 2026 Paperzz