A Lagrangian for the dark side of spacetime Angelo Tartaglia Monica Capone Dipartimento di Fisica, Politecnico di Torino July 20 2005 Paris - Einstein centennial 1 A simple classical problem Motion of a point massive particle in a viscous medium b S Ldt a 1 t x 2 L e mx 2 July 20 2005 Paris - Einstein centennial 2 Euler Lagrange equation x x 2 x 0 2 Non-invariance per inversion of x July 20 2005 Paris - Einstein centennial 3 Covariant formulation of the same problem s2 x S m e s1 ds 2 1 dx x L m 1 2 e c dt July 20 2005 Paris - Einstein centennial 4 Time like vector , , , 3 0 r ' ' , x' ,0,0 2 July 20 2005 2 2 Paris - Einstein centennial 5 Euler-Lagrange equation x' c 1 v' 2 c 1 v' v' 0 2 2 2 2 dx' v' d July 20 2005 Paris - Einstein centennial 6 Reference frame of the fluid ,0,0,0 r , x,0,0 0 x 2 x c1 2 x 0 c July 20 2005 Paris - Einstein centennial 7 Dependence on v d ' dv v ' 1 v + 2 x v c v 1 v 2 = Ke χ(v) given July 20 2005 Paris - Einstein centennial 8 Space time (4)-spherical symmetry 2 dr 2 2 2 2 2 2 2 ds d a r d sin d 2 1 kr July 20 2005 Paris - Einstein centennial k 0,1 9 Action integrals Free Symm. 2 S Rd 1 2 S 6 Vk a aa a 2 k d Simplest “dissip.” July 20 2005 d g d 4 x 1 2 S 6 Vk 1 Vk 4 r2 r1 r2 1 kr 2 dr 2 e a aa a k d Paris - Einstein centennial 10 Euler-Lagrange constant a 2aa aa k 0 2 a constant k 0 a a0 e July 20 2005 K 2 e 2 Paris - Einstein centennial empty and flat inflating 11 Non-constant χ Naive example given a 2aa k 0 2 Non trivial solution a a0e July 20 2005 2 Paris - Einstein centennial 12 χ depends on a a given ' d da a 2aa k a ' aa a k 0 2 July 20 2005 2 Paris - Einstein centennial 2 13 Dependence on a (a ) R ' R R a 2 2aa k 0 a ' a ' a R a aa a 2 k July 20 2005 Paris - Einstein centennial 14 More appropriate action integral S e July 20 2005 g Rd Paris - Einstein centennial 15 No pre-defined symmetry Euler-Lagrange-Einstein equations G R g 2 , 2 2 July 20 2005 2 , 2 , , ; 2 , 2 , ; 0 Paris - Einstein centennial 16 4-sphere symmetry Cosmic time ( ,0,0,0) S 6 Vk e a(aa a k )d July 20 2005 2 Paris - Einstein centennial 2 17 Non trivial if a a R July 20 2005 Paris - Einstein centennial 18 Let us consider (a) 2a ' a aa k a k 0 July 20 2005 2 2 Paris - Einstein centennial 19 Divergence free vector g , 0 a3 0 K 3 a July 20 2005 Paris - Einstein centennial 20 Empty space time field equations 2 K 2 2 6 6 a aa k a k 0 a Non-trivial implicit solution (k=0) July 20 2005 a Hae Paris - Einstein centennial a6 36K 2 21 Maximum expansion rate for aM 6K 6 2 2 6 K a M 6 H e July 20 2005 Paris - Einstein centennial 22 What about γ’s dynamics? Nothing more than wild guess An ‘EOS’ needed July 20 2005 Paris - Einstein centennial 23 Trying an approach similar to the one of field theory S e Rd g A Assume July 20 2005 ; ; B ; ; ; 0 Paris - Einstein centennial 24 ; Introducing symmetry 2 a 2 2 2 B 3 2 a K 3 a Obtain a complicated equation for a July 20 2005 Paris - Einstein centennial 25 What could the vector field γ represent? Again an analogy: • point-like defect in space time •consequent radial displacements field (one-dimensional strain) July 20 2005 Paris - Einstein centennial 26 Four-dimensional point defect July 20 2005 Paris - Einstein centennial 27 Conclusion • Use the guiding idea of motion through a viscous medium • Express the problem covariantly in the Lagrangian formalism • Assume basic expansion or contraction as an intrinsic property of space time • Adopt, by analogy, a ‘dissipative’ Lagrangian for empty space time depending on a vector field • When the vector field depends in turn on the scale parameter end with an accelerateddecelerated expansion July 20 2005 Paris - Einstein centennial 28
© Copyright 2026 Paperzz