Real-Time Diagrammatic Monte Carlo for Non-Equilibrium Quantum Transport Marco Schirò1 and Michele Fabrizio1,2 1 SISSA & Democritos 2 ICTP Measuring Quantum Transport at Nanoscale I Experiments can bridge small quantum objects to conducting leads Current I is induced through the dot/molecule by an applied bias Vb N. Roch et al., Nature (2008) Why it can be interesting.. 1. New-Tech: Molecular Electronics is coming! 2. New-Physics: Experimental realization of out-of-equilibrium quantum systems Measuring Quantum Transport at Nanoscale I Experiments measure I − V characteristics and conductance dI /dV as a function of external parameters I Very sensitive probes to local many body interactions (→ Meir-Wingreen) Park et al., Nature (2000) I I e.g. Coulomb Blockade, Kondo Effect Transport at finite bias requires a full out-of-equilibrium description Out-of-Equilibrium Quantum Impurity Models ΓL Vg ΓR µL L † † H = ∑ ξkα fkσ α fkσ α + Hloc [cσ , cσ ] + k,α R QI ∑ Vb µR † † Vkα (fkσ α cσ + cσ fkσ α ) kσ α Relevant Energy/Time Scales I I Tunneling to the leads → Γα = π Vα2 ρ(εF ) Local energy scales: I I I Molecular Level spacing, Vibrational frequency → ε0 , ω0 Local many-body interactions → Coulomb repulsion, electron-vibron coupling External control parameters → Bias V , gate voltage Vg , Temperature T How to solve Quantum Impurities out-of-equilibrium? I Keldysh perturbation theory L. Glazman et al. (2000), A. Rosch et al.(2000), J. Konig et al. (2000), A.J. Millis et al.(2004), .. I Bethe Ansatz for Open Quantum Systems I Time-dependent NRG I Iterative Summation of Real-Time Path Integrals P. Metha and N. Andrei (2006) F. Anders (2008) S. Weiss, J. Eckel, M. Thorwart and R. Egger PRB(2008) I Real-Time (Diagrammatic) MonteCarlo on the Keldysh Contour L. Muhlbacher and E. Rabani, PRL (2008) M. Schiro’ and M. Fabrizio, arXiv:0808.0589, Phys.Rev.B in press P. Werner, T. Oka, A. Millis, Phys. Rev. B (2009) Real-Time Dynamics for Quantum Impurity Models I t=0 µL L QI Initial Condition, t = 0 H0 = R ∑ † † ξkσ α fkσ α fkσ α + Hloc [cσ , cσ ] k,α =L,R µR ρ0 = ρL ⊗ ρloc ⊗ ρR Real-Time Dynamics for Quantum Impurity Models I t>0 Real-Time Dynamics, t > 0 H(t > 0) = H0 + µL L QI R ∑ † Vkα (fkσ α cσ + h.c.) kσ α µR ρ0 = ρL ⊗ ρloc ⊗ ρR Real-Time Dynamics for Quantum Impurity Models I t>0 Real-Time Dynamics, t > 0 H(t > 0) = H0 + µL L QI † Vkα (fkσ α cσ + h.c.) ∑ kσ α R µR h O(t) i = Tr ρ0 U † (t) O U(t) ρ0 = ρL ⊗ ρloc ⊗ ρR U(t) = T e −i Rt 0 dτH (τ ) I Following the dynamics from the initial condition we may access both to transient and to steady-state features. I Due to the bias in the long-time limit the system will reach a non-equilibrium steady-state → I (V ) 6= 0, dissipation! I How do we compute real-time averages? Real-Time Diagrammatic MC on the Keldysh Contour Real-time dynamics can be formulated along the Keldyshcontour CK R i dτ H0 +Hhyb hO(t)i = Tr ρ0 TCK e CK O 0 I t Real-Time Diagrammatic MC on the Keldysh Contour I Real-time dynamics can be formulated along the Keldyshcontour CK R i dτ H0 +Hhyb hO(t)i = Tr ρ0 TCK e CK O I We formally expand Keldysh evolution operator in power of Hhyb 0 t e R i C dτ H0 +Hhyb K =e R i C dτ H0 K ∞ ∑ (i)n n=0 Z CK Hhyb (τ1 ) · · · Z CK Hhyb (τn ) Real-Time Diagrammatic MC on the Keldysh Contour I Real-time dynamics can be formulated along the Keldyshcontour CK R i dτ H0 +Hhyb hO(t)i = Tr ρ0 TCK e CK O I We formally expand Keldysh evolution operator in power of Hhyb 0 t e R i C dτ H0 +Hhyb K =e R i C dτ H0 K ∞ ∑ (i)n n=0 I Z CK Hhyb (τ1 ) · · · Z CK Hhyb (τn ) At any order n in Htun we can integrate-out exactly electrons in the leads † ∆ τ, τ 0 = ∑ |Vkα |2 hTCK fkα (τ) fkα τ0 i . kα =L,R Real-Time Diagrammatic MC on the Keldysh Contour I Real-time dynamics can be formulated along the Keldyshcontour CK R i dτ H0 +Hhyb hO(t)i = Tr ρ0 TCK e CK O I We formally expand Keldysh evolution operator in power of Hhyb 0 t e R i C dτ H0 +Hhyb K =e R i C dτ H0 K ∞ ∑ (i)n n=0 I Z CK Hhyb (τ1 ) · · · Z CK Hhyb (τn ) At any order n in Htun we can integrate-out exactly electrons in the leads † ∆ τ, τ 0 = ∑ |Vkα |2 hTCK fkα (τ) fkα τ0 i . kα =L,R I Example: Second Order O(t) 0 0 O(t) det O(t) 0 ∆1 10 ∆20 1 ∆1 20 ∆2 20 Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = ∑ Z n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = ∑ Z n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = ∑ Z n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = + Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = ∑ Z n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = + Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = ∑ Z n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = + Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = Z ∑ n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = + + + Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = Z ∑ n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = + + + Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = Z ∑ n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = I + + Basic diag-MC updates I I Adding/Removing/Shifting vertex on the contour Accept/Reject by standard Metropolis W (Cnew ) A (Cnew ← Cold ) = min 1, W (Cold ) + Real-Time Diagrammatic MC on the Keldysh Contour ∞ h O(t) i = Z ∑ n=0 CK I ˆ 1e , . . . , tne |t1s , . . . tns )hTK c(t1e )c † (t1s ) · · · c(tne )c † (tns )O(t) iloc det∆(t Real-time quantum average written as a sum over diagrams along the contour < n (t) > = I + + + Basic diag-MC updates I I Adding/Removing/Shifting vertex on the contour Accept/Reject by standard Metropolis W (Cnew ) A (Cnew ← Cold ) = min 1, W (Cold ) Similar structure as the hybridization expansion in imaginary time but 1. Real-time evolution means the weight is a complex number 2. Unitarity of quantum evolution −→ huge cancellations! Z = Tr [ρ(t)] = 1 Benchmark: Biased Resonant Level Model H= ∑ k,α =L,R † † ξkα fkα fkα + ε0 c † c + ∑ Vkα (fkα c + c † fkα ) kα I (t) n (t) 1.0 eV = 0 eV = 4 Γ eV = 8 Γ 0.9 1.5 eV = 1.5 Γ eV = 1.0 Γ eV = 0.75 Γ eV =0.5 Γ 0.8 0.7 1 0.6 0.5 0.5 0.4 0.3 0 0.5 1.0 tΓ 1.5 2 0 0 0.25 0.5 0.75 1.0 1.25 1.5 tΓ Lesson from a simple case: 1. All the perturbation theory in Hhyb is summed-up → cfr exact result! 2. Dissipation occurs entirely within the fermionic reservoirs Non-Equilibrium Transport through an Anderson Impurity Hloc = εd n̂ + U (n̂ − 1)2 D (t) dI(t)/dV 1.0 0.9 0.8 1.5 U = 4Γ, eV = 0.1Γ U = 8Γ, eV = 2Γ U = 8Γ, eV = 2.0 Γ U = 4Γ, eV = 0.1 Γ 0.7 1 0.6 0.5 0.4 0.5 0.3 0.2 0 0.5 tΓ 1.0 1.5 0 0 0.25 0.5 0.75 1.0 1.25 1.5 tΓ Lesson from an hard case: I Charge degrees of freedom relax on short-time scales I A large bias eV TK cuts-off Keldysh evolution → I An exp-long-time controls the low-bias conductance dI dV ∼ 1/log 2 (eV /TK ) Hystogram of Perturbative Order 0,4 0,2 Γ t = 0.5 Γt = 1.0 Γt=1.5 Γ t=2.0 proba(k) 0,3 0,15 0,2 0,1 0,1 0,05 0 0 10 5 k Γ t=2.0 U=0 Γt = 2.0 U=4Γ 15 0 0 10 5 15 k I hki ∼ Γt , independently of U ←→ imaginary time: hki ∼ TK /T I For a finite quantum system Trloc [....] it’s a pure phase! Keldysh diag-MC: conclusions and outlooks What we like I Numerically exact method (no truncations): infinite size limit, continuous-time I Treat exactly local physic: strong correlations, phonons I Direct access to Current, Conductance, Impurity Green’s Function What we still don’t like I Lack of renormalization in the hystogram severely limits max time I Starting point is too far from strong-coupling steady-state Thank you! Non-Equilibrium Transport through a single molecule Tal, Krieger et al. PRL (08) µL L QI R µR I A simple model of molecular-conductor Hloc (n) = ω0 2 1 1 (x + p 2 ) + gx(n − ) + εd (n − ) 2 2 2 I Electron-Vibron Coupling affects dI /dV spectrum I Lowest order e-ph perturbation theory predicts sharp jump in dI /dV at eV ' h̄ω0 I Point Contact Spectroscopy reveals a smoother behaviour and a tiny jump Differential Conductance dI /dV from K-diagMC 0.75 εd = 1.0 0.32 εd = 3.0 0.745 dI/dV 0.315 0.74 0.31 0.735 ω0 0.305 ω0 0.73 1.8 1.9 2.0 V 2.1 2.2 0.3 1.7 1.8 1.9 2.0 2.1 2.2 2.3 V I Step-Down to Step-Up crossover when εd is tuned across G (V = 0) = 1/2 I Non-Perturbative effects act to broaden the feature
© Copyright 2026 Paperzz