Lecture3:Equilibriumof ParticlesandRigidBodies 1 Objectives • Tointroducetheconceptof“Free-body diagram”forparticlesandrigidbodies. • Toshowhowtosolveequilibriumproblems usingtheequationsofequilibrium. 2 ConditionsfortheEquilibriumofa Particle Remember the definition for aparticle:Particle hasamass,but negligible size(e.g.,earth orbiting the sun) Necessaryandsufficientconditionforthe equilibriumofaparticle: ΣF=ma=0 3 TheFree-BodyDiagram(FBD) • FBDisadrawingthatshowstheΣFonthe particle. – Thinkoftheparticleasisolatedandfreefromits surroundings. 4 ProcedureforDrawingaFree-Body Diagram 1. Drawtheoutlinedshape. 2. Showallforces. 3. Identifyeachforce. 5 ConnectionsinParticleEquilibrium Problems Spring Cableintension Cableshavenegligible weightandcannotstretch. Forafrictionlesspulley,Tis constantalongthecable. F=ks 6 CoplanarForceSystems 7 3DForceSystems Determinetheforceineachcable usedtosupportthe40lbcrate. 8 ConditionsfortheEquilibriumofa RigidBody Generalrigidbodymotion:3translation+3 rotation(6degreesoffreedom,DOF) Planarrigidbodymotion:2translation+1 rotationà 3independentquantities(3DOF) 9 ConditionsforEquilibriumforRigid Bodies • Necessaryandsufficientconditionsfor equilibrium: – ΣFR =ma=0 – Σ(MR)o =0 10 RigidBodies- Beams Structuralelements thatarecapableofwithstandingloadprimarilybyresistingagainstbending 11 RigidBodies- Beams Typesofbeamsdependingonhowtheyaresupported 12 SupportReactions Supportsimposerestrictions(constraints)on themotionofbodiesinspecificdirections. GeneralRules: 1. Ifasupportpreventsthetranslationofa bodyinagivendirection,thenaforceis developedonthebodyinthatdirection. 2. Ifarotationisprevented,acouplemomentis exertedonthebody. 13 SupportReactions Mostcommonsupportswewillencounterin thisclass: 1. Rollersupport: 3.Fixed(cantilever)support: 2. Pinsupport: 14 SupportReactions 15 SupportReactions 16 FreeBodyDiagramsforRigidBodies • Establishthex,ycoordinateaxesinasuitableorientation. • Drawanoutlinedshapeofthebody. • Representalltheknownandunknownexternalforcesonthe body,sothatequilibriumconditionscanbeapplied. MR F1 F2 FRy FRx 17 FreeBodyDiagramExercises 18 EquationsofEquilibrium • OncetheFBDisdrawnusetheequationsof equilibriumforrigidbodiestofindthe reactionforces. 19 EquationsofEquilibrium Determine thehorizontaland verticalcomponentsof reactiononthebeamcaused bythepinatBandtherocker atAasshowninthefigure. Neglecttheweightofthe beam. 20 Free BodyDiagram Exercises 1. DrawaFBDofthebar,which hasnoweight,hassmooth pointsofcontactatA,Band C. 2. Determinethenormal reactionsatthepointsof contactA,BandC.(Hint: reorientthecoordinateaxis). Justwritedownthe equilibriumequations.You donotneedtosolvethem. 21 EquilibriumofBodieswithmorethan OneMember • Moststructuresconsistofmorethanone member. • Ifthewholestructureisinequilibrium,then allmemberscomprisingthatstructurearealso inequilibrium.Apply: – Globalequilibrium – Localequilibrium tosolveforunknownforces 22 TwoForceMembers Someequilibriumproblemscan besimplified byrecognizing membersthataresubjecttoonly twoforces. Checkpoints: *Pinsatbothends *No(external)forces inbetweenthepins Two-force member Attention: Atwo-forcemember cannothaveamoment appliedtoit 23 RecognizingTwoForceMembers 24 RecognizingTwoForceMembers Themassof700kgissuspendedfroma trolleywhichmovesalongacranerailata distanceofdfromthesupportA. 1. DeterminetheforcealongthepinconnectedkneestrutBC(shortlink) 2. Determinethemagnitudeofforceat pinAasafunctionofpositiond. Takeg=10m/s2 25 BackupSlides 26 ThreeForceMembers Momentequilibrium canbe satisfiedaslongasthethree forcesformaconcurrentor parallelforcesystem. Three-force member 27 Whatwehavecoveredlasttime Mo=Fd (Scalar Definition) Mo=Fd =Fxy - Fyx VectorDefinition 28 Whatwehavecoveredlasttime Momentaboutanaxis CoupleMoment M=Fd (Magnitude). Orientationgivenbytherighthandrule. M =r xF(Vectordefinition) 29 Whatwehavecoveredlasttime SimplificationofaForceand CoupleSystem CoplanarDistributedLoading 30
© Copyright 2026 Paperzz