MEK215 - Lecture3 - Equilibrium of Particles and Rigid Bodies

Lecture3:Equilibriumof
ParticlesandRigidBodies
1
Objectives
• Tointroducetheconceptof“Free-body
diagram”forparticlesandrigidbodies.
• Toshowhowtosolveequilibriumproblems
usingtheequationsofequilibrium.
2
ConditionsfortheEquilibriumofa
Particle
Remember the definition for aparticle:Particle hasamass,but
negligible size(e.g.,earth orbiting the sun)
Necessaryandsufficientconditionforthe
equilibriumofaparticle:
ΣF=ma=0
3
TheFree-BodyDiagram(FBD)
• FBDisadrawingthatshowstheΣFonthe
particle.
– Thinkoftheparticleasisolatedandfreefromits
surroundings.
4
ProcedureforDrawingaFree-Body
Diagram
1. Drawtheoutlinedshape.
2. Showallforces.
3. Identifyeachforce.
5
ConnectionsinParticleEquilibrium
Problems
Spring
Cableintension
Cableshavenegligible
weightandcannotstretch.
Forafrictionlesspulley,Tis
constantalongthecable.
F=ks
6
CoplanarForceSystems
7
3DForceSystems
Determinetheforceineachcable
usedtosupportthe40lbcrate.
8
ConditionsfortheEquilibriumofa
RigidBody
Generalrigidbodymotion:3translation+3
rotation(6degreesoffreedom,DOF)
Planarrigidbodymotion:2translation+1
rotationà 3independentquantities(3DOF)
9
ConditionsforEquilibriumforRigid
Bodies
• Necessaryandsufficientconditionsfor
equilibrium:
– ΣFR =ma=0
– Σ(MR)o =0
10
RigidBodies- Beams
Structuralelements thatarecapableofwithstandingloadprimarilybyresistingagainstbending
11
RigidBodies- Beams
Typesofbeamsdependingonhowtheyaresupported
12
SupportReactions
Supportsimposerestrictions(constraints)on
themotionofbodiesinspecificdirections.
GeneralRules:
1. Ifasupportpreventsthetranslationofa
bodyinagivendirection,thenaforceis
developedonthebodyinthatdirection.
2. Ifarotationisprevented,acouplemomentis
exertedonthebody.
13
SupportReactions
Mostcommonsupportswewillencounterin
thisclass:
1. Rollersupport:
3.Fixed(cantilever)support:
2. Pinsupport:
14
SupportReactions
15
SupportReactions
16
FreeBodyDiagramsforRigidBodies
• Establishthex,ycoordinateaxesinasuitableorientation.
• Drawanoutlinedshapeofthebody.
• Representalltheknownandunknownexternalforcesonthe
body,sothatequilibriumconditionscanbeapplied.
MR
F1
F2
FRy
FRx
17
FreeBodyDiagramExercises
18
EquationsofEquilibrium
• OncetheFBDisdrawnusetheequationsof
equilibriumforrigidbodiestofindthe
reactionforces.
19
EquationsofEquilibrium
Determine thehorizontaland
verticalcomponentsof
reactiononthebeamcaused
bythepinatBandtherocker
atAasshowninthefigure.
Neglecttheweightofthe
beam.
20
Free BodyDiagram Exercises
1. DrawaFBDofthebar,which
hasnoweight,hassmooth
pointsofcontactatA,Band
C.
2. Determinethenormal
reactionsatthepointsof
contactA,BandC.(Hint:
reorientthecoordinateaxis).
Justwritedownthe
equilibriumequations.You
donotneedtosolvethem.
21
EquilibriumofBodieswithmorethan
OneMember
• Moststructuresconsistofmorethanone
member.
• Ifthewholestructureisinequilibrium,then
allmemberscomprisingthatstructurearealso
inequilibrium.Apply:
– Globalequilibrium
– Localequilibrium
tosolveforunknownforces
22
TwoForceMembers
Someequilibriumproblemscan
besimplified byrecognizing
membersthataresubjecttoonly
twoforces.
Checkpoints:
*Pinsatbothends
*No(external)forces
inbetweenthepins
Two-force
member
Attention:
Atwo-forcemember
cannothaveamoment
appliedtoit
23
RecognizingTwoForceMembers
24
RecognizingTwoForceMembers
Themassof700kgissuspendedfroma
trolleywhichmovesalongacranerailata
distanceofdfromthesupportA.
1. DeterminetheforcealongthepinconnectedkneestrutBC(shortlink)
2. Determinethemagnitudeofforceat
pinAasafunctionofpositiond.
Takeg=10m/s2
25
BackupSlides
26
ThreeForceMembers
Momentequilibrium canbe
satisfiedaslongasthethree
forcesformaconcurrentor
parallelforcesystem.
Three-force
member
27
Whatwehavecoveredlasttime
Mo=Fd (Scalar
Definition)
Mo=Fd =Fxy - Fyx
VectorDefinition
28
Whatwehavecoveredlasttime
Momentaboutanaxis
CoupleMoment
M=Fd (Magnitude).
Orientationgivenbytherighthandrule.
M =r xF(Vectordefinition)
29
Whatwehavecoveredlasttime
SimplificationofaForceand
CoupleSystem
CoplanarDistributedLoading
30