Chapter6 Test Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. Classify –3x5 + 4x3 + x2 + 9 by degree and by number of terms. a. quadratic binomial c. quintic polynomial of 4 terms b. quartic polynomial of 4 terms d. cubic binomial ____ 2. Write the expression (x + 5)(x + 2) as a polynomial in standard form. a. x2 + 3x + 10 c. x2 + 7x + 10 b. x2 – 3x + 7 d. x2 + 3x – 3 ____ 3. Write 2x3 + 14x2 + 20x in factored form. a. 2x(x + 5)(x + 2) b. 2x(x + 5)(x – 2) c. 5x(x + 2)(x + 2) d. 2x(x + 2)(x + 5) ____ 4. Write a polynomial function in standard form with zeros at 5, –4, and –3. a. c. b. d. ____ 5. Find the zeros of a. –2, multiplicity 6; 4, multiplicity –3 b. –2, multiplicity 6; –3, multiplicity 4 c. 6, multiplicity –2; –3, multiplicity 4 d. 6, multiplicity –2; 4, multiplicity –3 ____ 6. Divide a. b. and state the multiplicity. by x + 2. , R –29 c. d. , R 23 Divide using synthetic division. ____ 7. a. b. c. d. Factor the expression. ____ ____ 8. a. b. c. d. a. b. c. d. 9. ____ 10. Solve a. no solution . Find all complex roots. c. 5 5 , 3 3 b. d. 5 , 3 ____ 11. Solve a. 2, –2, 6, –6 b. no solution 5 , 3 . c. 2, –2 d. 2, –6 ____ 12. Find the zeros of a. 5, 2, –5 . Then graph the equation. c. 5, 2 y –6 –4 y 6 6 4 4 2 2 –2 2 4 6 –6 x –4 –2 –2 –2 –4 –4 –6 –6 y a. b. c. d. ____ 14. a. b. 6 x –4 2 4 6 x y 6 6 4 4 2 2 –2 2 4 6 x –6 –4 –2 –2 –2 –4 –4 –6 –6 Use Pascal’s Triangle to expand the binomial. ____ 13. 4 d. 0, –5, –2 b. 0, 5, 2 –6 2 c. d. ____ 15. a. b. c. d. ____ 16. Write 4x2(–2x2 + 5x3) in standard form. Then classify it by degree and number of terms. a. 2x + 9x4; quintic binomial c. 2x5 – 8x4; quintic trinomial 5 4 b. 20x – 8x ; quintic binomial d. 20x5 – 10x4; quartic binomial ____ 17. Determine which binomial is a factor of a. x + 5 b. x + 20 . c. x – 24 d. x – 5 ____ 18. Use the Rational Root Theorem to list all possible rational roots of the polynomial equation . Do not find the actual roots. a. –4, –2, –1, 1, 2, 4 c. 1, 2, 4 b. no roots d. –4, –1, 1, 4 ____ 19. Find the rational roots of a. 2, 6 b. –6, –2 . c. –2, 6 d. –6, 2 Find the roots of the polynomial equation. ____ 20. a. –3 ± 5i, –4 b. 3 ± 5i, –4 c. –3 ± i, 4 d. 3 ± i, 4 a. c. b. d. a. b. c. d. ____ 21. ____ 22. ____ 23. A polynomial equation with rational coefficients has the roots a. c. b. d. . Find two additional roots. ____ 24. For the equation , find the number of complex roots and the possible number of real roots. a. 4 complex roots; 0, 2 or 4 real roots b. 4 complex roots; 1 or 3 real roots c. 3 complex roots; 1 or 3 real roots d. 3 complex roots; 0, 2 or 4 real roots For the equation, find the number of complex roots, the possible number of real roots, and the possible rational roots. ____ 25. a. 7 complex roots; 1, 3, 5, or 7 real roots; possible rational roots: ±1, ±5 b. 7 complex roots; 2, 4, or 6 real roots; possible rational roots: ±1, ±5 c. 5 complex roots; 1, 3, or 5 real roots; possible rational roots: , ±1, ±5 d. 5 complex roots; 1, 3, or 5 real roots; possible rational roots: ±1, ±5 ____ 26. a. b. c. d. 6 complex roots; 2, 4, or 6 real roots; possible rational roots: 6 complex roots; 2, 4, or 6 real roots; possible rational roots: 6 complex roots; 0, 2, 4, or 6 real roots; possible rational roots: 6 complex roots; 0, 2, 4, or 6 real roots; possible rational roots: ____ 27. Find all zeros of a. b. ____ 28. Use the Binomial Theorem to expand a. b. c. d. . c. d. . Chapter6 Test Answer Section MULTIPLE CHOICE 1. ANS: OBJ: TOP: 2. ANS: OBJ: TOP: 3. ANS: OBJ: TOP: 4. ANS: OBJ: TOP: KEY: 5. ANS: OBJ: TOP: KEY: 6. ANS: OBJ: KEY: 7. ANS: OBJ: KEY: 8. ANS: OBJ: TOP: 9. ANS: OBJ: TOP: 10. ANS: OBJ: TOP: 11. ANS: OBJ: TOP: 12. ANS: OBJ: TOP: KEY: 13. ANS: OBJ: TOP: 14. ANS: OBJ: C PTS: 1 DIF: L2 REF: 6-1 Polynomial Functions 6-1.1 Exploring Polynomial Functions STA: CA A2 3.0 6-1 Example 1 KEY: degree of a polynomial | polynomial C PTS: 1 DIF: L2 REF: 6-2 Polynomials and Linear Factors 6-2.1 The Factored Form of a Polynomial STA: CA A2 10.0 6-2 Example 1 KEY: polynomial | standard form of a polynomial D PTS: 1 DIF: L2 REF: 6-2 Polynomials and Linear Factors 6-2.1 The Factored Form of a Polynomial STA: CA A2 10.0 6-2 Example 2 KEY: factoring a polynomial | polynomial D PTS: 1 DIF: L2 REF: 6-2 Polynomials and Linear Factors 6-2.2 Factors and Zeros of a Polynomial Function STA: CA A2 10.0 6-2 Example 5 polynomial function | standard form of a polynomial | zeros of a polynomial function B PTS: 1 DIF: L2 REF: 6-2 Polynomials and Linear Factors 6-2.2 Factors and Zeros of a Polynomial Function STA: CA A2 10.0 6-2 Example 6 polynomial function | zeros of a polynomial function | multiplicity | multiple zero D PTS: 1 DIF: L2 REF: 6-3 Dividing Polynomials 6-3.1 Using Long Division STA: CA A2 3.0 TOP: 6-3 Example 1 polynomial | division of polynomials A PTS: 1 DIF: L3 REF: 6-3 Dividing Polynomials 6-3.2 Using Synthetic Division STA: CA A2 3.0 TOP: 6-3 Example 3 division of polynomials | polynomial | synthetic division B PTS: 1 DIF: L2 REF: 6-4 Solving Polynomial Equations 6-4.2 Solving Equations by Factoring STA: CA A2 4.0 6-4 Example 3 KEY: polynomial | factoring a polynomial B PTS: 1 DIF: L2 REF: 6-4 Solving Polynomial Equations 6-4.2 Solving Equations by Factoring STA: CA A2 4.0 6-4 Example 3 KEY: factoring a polynomial | polynomial B PTS: 1 DIF: L2 REF: 6-4 Solving Polynomial Equations 6-4.2 Solving Equations by Factoring STA: CA A2 4.0 6-4 Example 4 KEY: factoring a polynomial | polynomial function A PTS: 1 DIF: L2 REF: 6-4 Solving Polynomial Equations 6-4.2 Solving Equations by Factoring STA: CA A2 4.0 6-4 Example 6 KEY: factoring a polynomial | polynomial B PTS: 1 DIF: L2 REF: 6-2 Polynomials and Linear Factors 6-2.2 Factors and Zeros of a Polynomial Function STA: CA A2 10.0 6-2 Example 4 Zero Product Property | polynomial function | zeros of a polynomial function | graphing C PTS: 1 DIF: L2 REF: 6-8 The Binomial Theorem 6-8.1 Binomial Expansion and Pascal's Triangle STA: CA A2 20.0 6-8 Example 2 KEY: Pascal's Triangle | binomial expansion D PTS: 1 DIF: L2 REF: 6-8 The Binomial Theorem 6-8.1 Binomial Expansion and Pascal's Triangle STA: CA A2 20.0 TOP: 6-8 Example 1 KEY: Pascal's Triangle | binomial expansion 15. ANS: A PTS: 1 DIF: L2 REF: 6-8 The Binomial Theorem OBJ: 6-8.1 Binomial Expansion and Pascal's Triangle STA: CA A2 20.0 TOP: 6-8 Example 1 KEY: Pascal's Triangle | binomial expansion 16. ANS: B PTS: 1 DIF: L3 REF: 6-1 Polynomial Functions OBJ: 6-1.1 Exploring Polynomial Functions STA: CA A2 3.0 TOP: 6-1 Example 1 KEY: degree of a polynomial | polynomial | standard form of a polynomial 17. ANS: D PTS: 1 DIF: L2 REF: 6-3 Dividing Polynomials OBJ: 6-3.1 Using Long Division STA: CA A2 3.0 TOP: 6-3 Example 2 KEY: division of polynomials | factoring a polynomial | polynomial 18. ANS: A PTS: 1 DIF: L2 REF: 6-5 Theorems About Roots of Polynomial Equations OBJ: 6-5.1 The Rational Root Theorem STA: CA A2 5.0 | CA A2 6.0 | CA A2 8.0 TOP: 6-5 Example 1 KEY: polynomial function | root of a function | solving equations | Rational Root Theorem 19. ANS: B PTS: 1 DIF: L2 REF: 6-5 Theorems About Roots of Polynomial Equations OBJ: 6-5.1 The Rational Root Theorem STA: CA A2 5.0 | CA A2 6.0 | CA A2 8.0 TOP: 6-5 Example 1 KEY: polynomial function | Rational Root Theorem | root of a function | solving equations 20. ANS: B PTS: 1 DIF: L2 REF: 6-5 Theorems About Roots of Polynomial Equations OBJ: 6-5.1 The Rational Root Theorem STA: CA A2 5.0 | CA A2 6.0 | CA A2 8.0 TOP: 6-5 Example 2 KEY: polynomial function | Rational Root Theorem | solving equations | root of a function 21. ANS: A PTS: 1 DIF: L2 REF: 6-5 Theorems About Roots of Polynomial Equations OBJ: 6-5.1 The Rational Root Theorem STA: CA A2 5.0 | CA A2 6.0 | CA A2 8.0 TOP: 6-5 Example 2 KEY: polynomial function | Rational Root Theorem | root of a function 22. ANS: D PTS: 1 DIF: L2 REF: 6-5 Theorems About Roots of Polynomial Equations OBJ: 6-5.1 The Rational Root Theorem STA: CA A2 5.0 | CA A2 6.0 | CA A2 8.0 TOP: 6-5 Example 2 KEY: polynomial function | Rational Root Theorem | solving equations | root of a function 23. ANS: C PTS: 1 DIF: L2 REF: 6-5 Theorems About Roots of Polynomial Equations OBJ: 6-5.2 Irrational Root Theorem and Imaginary Root Theorem STA: CA A2 5.0 | CA A2 6.0 | CA A2 8.0 TOP: 6-5 Example 3 KEY: polynomial function | solving equations | Irrational Root Theorem | conjugates 24. ANS: A PTS: 1 DIF: L2 REF: 6-6 The Fundamental Theorem of Algebra OBJ: 6-6.1 The Fundamental Theorem of Algebra TOP: 6-6 Example 1 KEY: Fundamental Theorem of Algebra | Imaginary Root Theorem | Rational Root Theorem | root of a function | polynomial function 25. ANS: A PTS: 1 DIF: L2 REF: 6-6 The Fundamental Theorem of Algebra OBJ: 6-6.1 The Fundamental Theorem of Algebra TOP: 6-6 Example 1 KEY: Fundamental Theorem of Algebra | Imaginary Root Theorem | Rational Root Theorem | root of a function | polynomial function 26. ANS: D PTS: 1 DIF: L3 REF: 6-6 The Fundamental Theorem of Algebra OBJ: 6-6.1 The Fundamental Theorem of Algebra TOP: 6-6 Example 1 KEY: Fundamental Theorem of Algebra | Imaginary Root Theorem | Rational Root Theorem | root of a function | polynomial function 27. ANS: B PTS: 1 DIF: L2 REF: 6-6 The Fundamental Theorem of Algebra OBJ: 6-6.1 The Fundamental Theorem of Algebra TOP: 6-6 Example 2 KEY: Fundamental Theorem of Algebra | Rational Root Theorem | polynomial function | root of a function | zeros of a polynomial function 28. ANS: D PTS: 1 DIF: L2 REF: 6-8 The Binomial Theorem OBJ: 6-8.2 The Binomial Theorem STA: CA A2 20.0 TOP: 6-8 Example 3 KEY: Pascal's Triangle | binomial expansion
© Copyright 2025 Paperzz