Chemical Equilibration at the Hagedorn Temperature Jaki Noronha-Hostler Collaborators: C. Greiner and I. Shovkovy Outline • Motivation: understanding chemical freeze-out in heavy ion collisions – Hagedorn Resonances • Master Equations for the decay HS n BB – Parameters • Estimates of Equilibration times – Baryon anti-baryon decay widths • Conclusions and Outlook Motivation • Standard hadron gas: chem B vB nB - chemical eq. time 30mb , nBeq nBeq 0.04 fm -3 , v 0.56c 1 RHIC 3 30mb 0.4 fm fm 10 c Can’t explain apparent equilibrium • Kapusta and Shovkovy, Phys. Rev. C 68, 014901-1 (2003) • Greiner and Leupold, J. Phys. G 27, L95 (2001) • Huovinen and Kapusta, Phys. Rev. C 69, 014901 (2004) • Some suggest long time scales imply that the hadrons are “born in equilibrium” – Heinz ,Stock, Becattini… Production of anti-baryons • p production • annihilation rate p N n • Y production N Y N p 50 mb Y Y 1 N n K N n 2 K N n 3K Y N n nY K detailed balance 1 NY n n K vYN Y fm 1- 3 c B chemical equilibration time •Rapp and Shuryak, PRL 86, 2980 (2001) •Greiner and Leupold, J. Phys. G 27, L95 (2001) Motivation • Baryon anti-baryon production lower by a factor of 3-4 Huovinen and Kapusta • Can be produced through HS n BB where HS are mesonic Hagedorn resonances with time scales of =1-3 fm/c. – Greiner, Koch-Steinheimer, Liu, Shovkovy, and Stoecker Hagedorn Resonances • M In the 1960’s Hagedorn found a fit for an exponentially growing mass spectrum m TH F ( m) F ( m ) e dm m0 • m0 500 MeV A m 2 m02 5 4 TH 180 MeV A 0.5 MM 7 GeV Provides extra degrees of freedom near the critical temperature to “push” hadrons into equilibrium Master Equations for the decay HS n BB • master equation dn " loss "" gain" dt dN R i dt n N Reqi N eq N eq i N R i i , N R i eq Bi n i , BB eq 2 N BB N n N n N BB 2 n n eq N dN N N R i 2 eq i , nBi n N R i N R i eq i , BB n N R i eq 2 eq N BB dt N BB N i n N i N eq N n dN BB R i 2 eq N BB N R i i , BB n 2 eq N N dt i BB Parameters • Hagedorn States (mesonic, non-strange) M=2-7 GeV m n 0.6 0.3 • Branching Ratios m i – Gaussian distribution: Bin 1 e 2 n n 2 2 2 • Decay Widths i [ MeV ] 0.168mi 88.102 Hammer ‘72 5 16 0.26 mi m Future: microcanonical model 1 1.8 Ranges from i=250-1090 MeV Estimates of Equilibration times: HS $ nπ • Case 1: Pions are held in equilibrium 1 fm , 0.181 0.473 c • Case 2: Hagedorn States are held in equilibrium eff itot i N Reqi Neq n , 0.017 0.269 fm c Estimates of Equilibration times: HS$ nπ • Case 3: Both are out of equilibrium dN R i dt n N Bi n N R i itot N Reqi eq n2 N n dN N tot eq i nBi n N R i N R i eq dt i n2 N = 0 (Quasi-equilibrium) – Quasi-equilibrium- when the right hand side goes to zero before full equilibrium is reached. Estimates of Equilibration times: HS $ nπ • Quasi-equlibrium is reached on the time scales of Case 1 and Case 2 n N R i N • eq R i N eq 0 N N R i N Reqi N eq N n Because resonances decay into many pions a small deviation of the pions from equilibrium makes it more difficult for the resonances to reach equilibrium Baryon anti-Baryon decay widths tot itot B i , , BB n 0 .2 0.4 tot i , 45 435 MeV M HS 4 GeV (Fuming Liu) Estimates of Equilibration times: HS n BB • Case 1: Pions are held in equilibrium ieff , BB eq N fm R i tot i , BB eq , 0.169 1.062 c i N BB Reminder: HS appear only near Tc! Estimates of Equilibration times: HS n BB • Case 2: Hagedorn States are held in equilibrium • Case 3: Pions and Hagedorn States are held in equilibrium Estimates of Equilibration times: HS n BB • Case 4: All are out of equilibrium Conclusions and Outlook • Our preliminary results and time scale estimates indicate that baryon anti-baryon pairs can be born out of equilibrium. • Fully understand time scales when all particles are out of equilibrium • Include a Bjorken expansion to observe the fireball cooling over time (already done) • Improve branching ratios by using a microcanonical model • Include non-zero strangeness… in the baryon anti-baryon part
© Copyright 2026 Paperzz