IBE Encryption

Efficient Selective-ID IBE
Without Random Oracle
Dan Boneh
Xavier Boyen
Stanford University
Voltage Security
1
Identity Based Encryption (IBE)

IBE: Public key encryption scheme where public key
is an arbitrary string (ID).
 Examples: user’s e-mail address, current-date, …
email encrypted using public key:
“[email protected]”
CA/PKG
master-key
2
IBE System

IBE system is made up of 4 algorithms:
setup:
generate params and master-key, MK.
keygen:
given pub-key ID and master-key
output priv-key, dID
Encrypt: using pub-key ID
(and params)
Decrypt: using priv-key.

Main use of IBE:
• reduce need for online pub-key directory.
3
Semantic Secure IBE systems

[BF’01]
Semantic security when attacker has few private keys.
Run
Setup
ID1 , ID2 , ID3 , …, IDn
dID1 , dID2 , dID3 , …, dIDn
ID* , m0, m1  G
b{0,1}
C* = Enc( mb , ID* ,
params)
b’  {0,1}
Attacker
Challenger
Run
KeyGen
params
IDi  ID*

Def: Alg. A -breaks IBE sem. sec. if
Pr[b=b’] > ½ + 

(t,)-security: no t-time alg. can -break IBE sem. sec.
4
Selective-ID Secure IBE
[CHK’03]
: pub-key to attack
Run
Setup
ID1 , ID2 , ID3 , …, IDn
dID1 , dID2 , dID3 , …, dIDn
ID* , m0, m1  G
b{0,1}
C* = Enc( mb , ID* ,
params)
b’  {0,1}

Def: Alg. A -breaks IBE sem. sec. if
Attacker
Challenger
Run
KeyGen
params
IDi  ID*
Pr[b=b’] > ½ + 
5
Known Results

BF’01: Full sem. sec. IBE system in RO model.
• Based on Comp. Bilinear-DH assumption.
• Extends to provide CCA2 in RO model.

CHK’03: Selective-ID Secure IBE without RO.
• Based on Decision Bilinear-DH assumption.
• Problem: bilinear map per bit of ID.

Current: (two) efficient Selective-ID secure IBE.
• No Random oracles.
• Based on Decision Bilinear-DH assumption.
• 0 pairings for enc. 2 pairings for dec.
6
Bilinear maps
(abstractly)

G , G1 : finite cyclic groups of prime order q.

Def: An admissible bilinear map
• Bilinear:
e(ga, gb) = e(g,g)ab
• Non-degenerate:
g generates G

e: GG  G1
is:
a,bZ, gG
e(g,g) generates G1 .
• “Efficiently” computable.

Currently: examples from algebraic geometry
where Dlog in G believed to be hard.
7
Bilinear Diffie-Hellman Problems

Def: Alg. A -solves Bilinear-DH in group G if:
Pr[ A(g,h,gx,gy) = e(g,h)xy ] > 
where g,h  G and x,y  {1,…,q-1}.

Def:
Alg. A -solves Bilinear-DDH in group G if:
Pr[ A(g,h,gx,gy, e(g,h)xy) = 1 ] Pr[ A(g,h,gx,gy, e(g,h)r) = 1 ]
|
> 
where g,h  G and x,y,r  {1,…,q-1}.
8
Selective-ID IBE system

Setup: params = (g, g1=gx, g2, h) G1 ;

KeyGen (ID, MK):
r{1,…,q-1}


given pub-key ID{1,…,q} do:
dID = ( MK(g1ID h)r , gr )
;
Encrypt ( m, ID, (g,g1,g2,h) ):
s{1,…,q-1}
Decrypt (C, dID):
observe:
MK = g2x
;
s
C = ( me(g1,g2) , gs , (g1ID h)s )
C = (C0 , C1 , C2) using dID = (d1, d2)
s
e(C1 , d1) / e(C2, d2) = e(g1, g2)
9
Security Theorem

Thm:
 t-time alg. that -breaks IBE sem. sec. in G
~

 t-time alg. that -solves bilinear-DDH in G.
10
Proof
(g, g1, g2
=gx,
g3
R=e(g,g1
=gy,
)z
Algorithm for Bilinear-DDH
ID*  {1,…,q}
)
Unknown: MK = g1x
params = (g, g1, g2, h=g1
ID*

-ID*
g )
ID  {1,…,q}
r
r
d0=g2-/(ID-ID*)(g1IDh) , d1 = g2-1/(ID-ID*)g
m0, m1  G
Attacker
dID = ( d0 , d1 )

1 if z=xy
0 if z rand
C* = ( mbR , g3 , g3 )
b’  {0,1}
11
Proof
(g, g1, g2
=gx,
g3
R=e(g,g1
=gy,
)z
Algorithm for Bilinear-DDH
ID*  {1,…,q}
)
params = (g, g1, g2, h=g1
ID*

-ID*
g )
ID  {1,…,q}
Attacker
dID = ( d0 , d1 )
m0, m1  G

C* = ( mbR , g3 , g3 )
1 if b=b’
0 otherwise
b’  {0,1}
12
Applications

Our IBE + CHK’04
 efficient CCA2 public-key
system w/o Random Oracles from Bilinear-DDH:
• Enc:
3 exp.
(4 exp. in CS)
• Dec:
two pairings + 2exp.
(2 exp. in CS)
• CT size: 3|G| + one-time-sig.
(4|G| in CS)

Comparable to Cramer-Shoup (but a bit worse).
• Shorter CT using BB’04 short sigs w/o R.O.

2nd system: one fewer bilinear maps for dec.
• Gives more efficient CCA2 public-key system.
13
Extensions

Hierarchical IBE
[LH’02, GS’02]
• System extends to give an efficient
Selective-ID H-IBE without R.O.
• 2-HIBE + CHK’04 
Efficient CCA2 Selective-ID IBE without R.O.

2nd system: more efficient Selective-ID IBE.
• one fewer bilinear maps for dec.
• But, based on stronger assumption (DH-Inversion).

Recently [BB’04]:
• Full-IBE with no RO based on Bilinear-DDH.
14