TABLE 6 Logical Equivalences. Equivalence Name p AT=.p Identity laws p VF=.p Domination laws p vT=.T pAF=.F pvp=.p Idempotent laws p Ap=.p -.(-.p) =. p Double negati on law p vq=.q Vp Commutative laws p Aq=.q Ap (p q) V r V (p A q) A r p V (q A r) p A (q V r) == (p == (p == == -.(p A q) -.(p v q) P (p A q) V == p V == p A -'P v Associative laws (q V r) (q A r) V q) A (p V r) A q) V (p A r) Distributive laws De Morgan's laws -.q -'P A -'q == Absorption laws p p A(P Vq)==p p v -'P p A -.p == T == F Negation laws ---TABLE 7 Logical Equivalences Involving Conditional Statements. p ~ P ~ == -'P V q q == -.q ~ -'P q P V q == -'P P A q == ~ q -'(p ~ -.q) -'(p ~ q) == P A (p ~ q) A (p ~ r) (p ~ r) A (q ~ r) -.q (p ~ q) v (p ~ r) (p ~ r) V (q ~ r) TA B LE 8 Logical Equivalences Involving Biconditionals. P B P B == (p ~ q) A q == -'P B -.q P B q =. (p A q) V (-.p A -.q) -'(p == p ~ (q A r ) == (p V q) ~ r == p ~ (q V r) == (p A q) ~ r -- q B q) == P B (q ~ p) -.q
© Copyright 2026 Paperzz