Introduction to Silicon Programming in the Tangram/Haste language Material adapted from lectures by: Prof.dr.ir Kees van Berkel [Dr. Johan Lukkien] [Dr.ir. Ad Peeters] at the Technical University of Eindhoven, the Netherlands TU/e Handshake signaling and data request ar push channel active side acknowledge ak passive side data ad versus request ar pull channel active side acknowledge ak passive side data ad Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 2 TU/e Handshake signaling: push channel time req ar ack ak early ad broad ad late ad Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 3 TU/e Data bundling In order to maintain event ordering at both sides of a channel, the circuit must satisfy data bundling constraint: • for push channel: delay along request wire must exceed delay of data wire; • for pull channel: delay along acknowledge wire must exceed delay of data wire. Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 4 TU/e Handshake signaling: pull channel When data wires are invalid: req multiple ar time transitions allowed. and incomplete ack ak early ad broad ad late ad Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 5 TU/e Tangram assignment x:= f(y,z) yw y f zw xw0 z | x xr xw1 Handshake circuit Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 6 TU/e Four-phase data transfer time r / br ba / cr ca / a b c bd / cd 1 Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 2 3 4 5 7 TU/e Handshake latch [ [ w ; [w : rd:= wd] [] r ; r ]] • 1-bit handshake latch: wd wr rd wd wr rd wk = wr rk = rr Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 w wd wr x r rd 8 TU/e N-bit handshake latch wr rr wd1 rd1 wd2 rd2 ... wdN rd area, delay, energy • area: 2(N+1) gate eqs. • delay per cycle: 4 gate delays • energy per write cycle: 4 + 0.5*2N transitions, in average N wk Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 rk 9 TU/e Transferrer [ [ a : (b ; c)] ; [ a : (b ; cd:= bd ; c ; cd:= )] ] ar ak a b c Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 br bk bd ck cr cd 10 TU/e Multiplexer [ [ a : c ; a : (cd:= ad; c ; cd:= ) [] b : c ; b : (cd:= bd; c ; cd:= ) ]] Restriction: ar br must hold at all times! Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 a | c b 11 TU/e Multiplexer realization control circuit data circuit Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 12 TU/e Logic/arithmetic operator [ [ a : (b || c) ] ; [ a : ((b || c) ; ad:= f(bd , cd ))] ] b f a c Cheaper realization (delay sensitive): [ [ a : (b || c) ] ; [ a : ((b || c) ; ad:= f(bd , cd ))] ; “delay” ; ad:= ] Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 13 TU/e A one-place fifo buffer byte = type [0..255] & BUF1 = main proc (a?chan byte & b!chan byte). begin x: var byte | forever do a?x ; b!x od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 a BUF1 b 14 TU/e A one-place fifo buffer byte = type [0..255] & BUF1 = main proc (a?chan byte & b!chan byte). begin x: var byte | forever do a?x ; b!x od end a Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 ; x b 15 TU/e 2-place buffer a BUF1 b BUF1 c byte = type [0..255] & BUF1 = proc (a?chan byte & b!chan byte). begin x: var byte | forever do a?x ; b!x od end & BUF2: main proc (a?chan byte & c!chan byte). begin b: chan byte | BUF1(a,b) || BUF1(b,c) end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 16 TU/e Two-place ripple buffer Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 17 TU/e Two-place wagging buffer byte = type [0..255] & wag2: main proc (a?chan byte & b!chan byte). begin x,y: var byte | a?x ; forever do (a?y || b!x) ; (a?x || b!y) a od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 b 18 TU/e Two-place ripple register … begin x0, x1: var byte | forever do b!x1 ; x1:=x0; a?x0 od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 19 TU/e 4-place ripple register byte = type [0..255] & rip4: main proc (a?chan byte & b!chan byte). begin x0, x1, x2, x3: var byte | forever do b!x3 ; x3:=x2 ; x2:=x1 ; x1:=x0 ; a?x0 od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 20 TU/e 4-place ripple register x0 x1 x2 x3 • area : N (Avar + Aseq ) • cycle time : Tc = (N+1) T:= • cycle energy: Ec = N E:= Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 21 TU/e Introducing vacancies … begin x0, x1, x2, x3, v: var byte | forever do (b!x3 ; x3:=x2 ; x2:=v) || (v:=x1 ; x1:=x0 ; a?x0) od end • what is wrong? Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 22 TU/e Introducing vacancies forever do ((b!x3 ; x3:=x2) || (v:=x1 ; x1:=x0 ; a?x0)) ; x2:=v od or: forever do ((b!x3 ; x3:=x2) || (v:=x1 ; x1:=x0)) ; (x2:=v || a?x0) od Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 23 TU/e “synchronous” 4-p ripple register m0 m1 m2 x0 m3 b s0 s1 s2 forever do (s0:=m0 || s1:=m1 || s2:=m2 || b!m3 ) ; ( a?m0 || m1:=s0 || m2:=s1 || m3:=s2) od Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 24 TU/e 4-place wagging register x0 x1 a x2 b x2 y0 x3 y1 forever do b!x1 ; x1:=x0 ; a?x0 ; b!y1 ; y1:=y0 ; a?y0 od Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 25 TU/e 8-place register 4-way wagging forever do b!u1 ; u1:=u0 ; a?u0 ; b!v1 ; v1:=v0 ; a?v0 ; b!x1 ; x1:=x0 ; a?x0 ; b!y1 ; y1:=y0 ; a?y0 od Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 26 TU/e Four 88 shift registers compared type area cycle time energy/message [gate eq.] [nanosec.] [nanojoule] linear 167 43 0.75 pseudo synchronous 4-way wagging wagging 264 23 1.46 238 26 0.29 201 34 0.48 Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 27 TU/e Tangram/Haste • Purpose: programming language for asynchronous VLSI circuits. • Creator: Tangram team @ Philips Research Labs (protoTangram 1986; release 2 in 1998). • Inspiration: Hoare’s CSP, Dijkstra’s GCL. • Lectures: no formal introduction; manual hand-out (learn by example, learn by doing). • Main tools: compiler, analyzer, simulator, viewer. Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 28 TU/e 2-place buffer a BUF1 b BUF1 c byte = type [0..255] & BUF1 = proc (a?chan byte & b!chan byte). begin x: var byte | forever do a?x ; b!x od end & BUF2: main proc (a?chan byte & c!chan byte). begin b: chan byte | BUF1(a,b) || BUF1(b,c) end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 29 TU/e Median filter median: main proc (a? chan W & b! chan W). begin x,y,z: var W & xy, yz, zw: var bool | forever do ((z:=y; y:=x) || yz:=xy) ; a?x ; (xy:= x<=y || zx:= z<=x) ; if zx=xy then b!x or xy=yz then b!y or yz=zx then b!z a fi Median od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 b 30 TU/e Greatest Common Divisor gcd: main proc (ab?chan <<byte,byte>> & c!chan byte). begin x,y: var byte | forever do ab?<<x,y>> ; do x<y then y:= y-x or x>y then x:= x-y od ; c!x od end ab GCD Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 c 31 TU/e Nacking Arbiter nack: main proc (a?chan bool & b!chan bool). begin na,nb: var bool | <<na,nb>> := <<true,true>> ; forever do sel probe(a) then a!nb || na:= na#nb or probe(b) then b!na || nb:= nb#na les od a Nacking end b arbiter Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 32 TU/e C : Tangram handshake circuit C(T) = C(R;S)= ; T a b R a Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 S c 33 TU/e C : Tangram handshake circuit C(R;S)= C(R;S)= ; ; R S a c S a | R c b Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 34 TU/e C : Tangram handshake circuit C (R||S) = || Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 i S | R o rx 35 TU/e Tangram Compilation Tangram program T H C Handshake circuit || Handshake process E VLSI circuit Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 · H · T = || · C ·T 36 TU/e VLSI programming of asynchronous circuits behavior, Tangram program feedback compiler simulator area, time, energy, test coverage Handshake circuit expander Asynchronous circuit (netlist of gates) Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 37 TU/e Tangram tool box Let Rlin4.tg be a Tangram program: • htcomp -B Rlin4 – compiles Rlin4.tg into Rlin4.hcl, a handshake circuit • htmap Rlin4 – produces Rlin4*.v files, a CMOS standard-cell circuit • htsim Rlin4 a b – executes Rlin4.hcl with files a, b for input/output • htview Rlin4 – provides interactive viewing of simulation results Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 38 TU/e Tangram program “Conway” a P b Q B1 = type [0..1] & B2 = type <<B1,B1>> & B3 = type <<B1,B1,B1>> &P =… & Q=… & c R d R=… & conway: main proc (a?chan B2 & d!chan B3). begin b,c: chan B1 | P(a,b) || Q(b,c) || R(c,d) end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 39 TU/e Tangram program “Conway” & P = proc(a?chan B2 & b!chan B1). begin x: var B2 | forever do a?x; b!x.0; b!x.1 od end & Q= proc(b?chan B1 & c!chan B1). begin y: var B1 | forever do b?y; c!y od end & R= proc(c?chan B1 & d!chan B3). begin x,y,z: var B1 | forever do c?x; c?y; c?z; d!<<x,y,z>> od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 40 TU/e VLSI programming for … • Low costs: – introduce resource sharing. • Low delay (high throughput): – introduce parallelism. • Low energy (low power): – reduce activity; … Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 41 TU/e VLSI programming for low costs • Keep it simple!! • Introduce resource sharing: commands, auxiliary variables, expressions, operators. • Enable resource sharing, by: – reducing parallelism – making similar commands equal Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 42 TU/e Command sharing P : proc(). S S ;… ;S 0 1 S 1 | 0 P() ; … ; P() S S Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 43 TU/e Command sharing: example ax : proc(). a?x a?x ; … ; a?x ax() ; … ; ax() 0 0 a | 1 Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 | 1 | xw a xw 44 TU/e Procedure definition vs declaration Procedure definition: P = proc (). S – provides a textual shorthand (expansion) – each call generates copy of resource, i.e. no sharing Procedure declaration: P : proc (). S – defines a sharable resource – each call generates access to this resource Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 45 TU/e Command sharing • Applies only to sequentially used commands. • Saves resources, almost always (i.e. when command is more costly than a mixer). • Impact on delay and energy often favorable. • Introduced by means of procedure declaration. • Makes Tangram program less well readable. Therefore, apply after program is correct & sound. • Should really be applied by compiler. Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 46 TU/e Sharing of auxiliary variables • x:=E is an auto assignment when E depends on x. This is compiled as aux:=E; x:= aux , where aux is a “fresh” auxiliary variable. • With multiple auto assignments to x, as in: x:=E; ... ; x:=F auxiliary variables can be shared, as in: aux:=E; aux2x(); ... ; aux:=F; aux2x() with aux2x(): proc(). x:=aux Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 47 TU/e Expression sharing f : func(). E x:=E ; … ; a!E x:=f() ; … ; a!f() e0 E e1 E | E e0 e1 Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 48 TU/e Expression sharing • Applies only to sequentially used expressions. • Often saves resources, (i.e. when expression is more costly than the demultiplexer). • Introduced by means of function declarations. • Makes Tangram program less well readable. Therefore apply after program is correct & sound. • Should really be applied by compiler. Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 49 TU/e Operator sharing • Consider x0 := y0+z0 ; … ; x1 := y1+z1 . • Operator + can be shared by introducing add : func(a,b? var T): T. a+b and applying it as in add(y0, z0) ; … ; x1 := add(y1,z1) . Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 x0 := 50 TU/e Operator sharing: the costs • Operator sharing may introduce multiplexers to (all) inputs of the operator and a demultiplexer to its output. • This form of sharing only reduces costs when: – operator is expensive, – some input(s) and/or output are common. Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 51 TU/e Operator sharing: example • Consider x := y+z0 ; … ; x := y+z1 . • Operator + can be shared by introducing add2y : proc(b? var T). x:=y+b and applying it as in add2y(z0) ; … ; add2y(z1) . Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 52 TU/e Greatest Common Divisor gcd: main proc (ab?chan <<byte,byte>> & c!chan byte). begin x,y: var byte | forever do ab?<<x,y>> ; do x<y then y:= y-x or x>y then x:= x-y od ; c!x ab c GCD od end Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 53 TU/e Assigment: make GCD smaller • Both assignments (y:= y-x and x:= x-y) are auto assignments and hence require an auxiliary variable. • Program requires 4 arithmetic resources (twice < and –) . • Reduce costs of GCD by saving on auxiliary variables and arithmetic resources. (Beware the costs of multiplexing!) • Use of ff variables not allowed for this exercise. Philips Research, Kees van Berkel, Ad Peeters, 2002-09-10 54
© Copyright 2026 Paperzz