Proofs Strategies For PROOFS AND FUNDAMENTALS February 9, 2017 1. Prove if ๐ then ๐ โ via Direct Proof Theorem. Let ๐ and ๐ be statements. โฆ (hypotheses) โฆ Prove if ๐ then ๐. Symbols: ๐ โ ๐ Proof. Suppose that ๐ is true. โฎ (argumentation) โฎ Then ๐ is true. 2. Prove if ๐ then ๐ โ via Proof by Contrapositive Theorem. Let ๐ and ๐ be statements. โฆ (hypotheses) โฆ Prove if ๐ then ๐. Symbols: ๐ โ ๐ Proof. Suppose that ๐ is false. โฎ (argumentation) โฎ Then ๐ is false. 3. Prove if ๐ then ๐ โ via Proof by Contradiction Theorem. Let ๐ and ๐ be statements. โฆ (hypotheses) โฆ Prove if ๐ then ๐. Symbols: ๐ โ ๐ Proof. Suppose that ๐ is true. Suppose that ๐ is false. โฎ (argumentation) โฎ We have reached a contradiction. Therefore ๐ must be true. 1 4. Prove if ๐ , then ๐ด or ๐ต Theorem. Let ๐ , ๐ด and ๐ต be statements. โฆ (hypotheses) โฆ Prove if ๐ , then ๐ด or ๐ต. Symbols: ๐ โ (๐ด โจ ๐ต) Proof. Suppose that ๐ is true. Suppose that ๐ด is false. โฎ (argumentation) โฎ Then ๐ต is true. 5. Prove if ๐ด or ๐ต, then ๐ Theorem. Let ๐ด, ๐ต and ๐ be statements. โฆ (hypotheses) โฆ Prove if ๐ด or ๐ต, then ๐. Symbols: (๐ด โจ ๐ต) โ ๐ Proof. Suppose that ๐ด or ๐ต are true. Case 1: Suppose that ๐ด is true. โฎ (argumentation) โฎ Then ๐ is true. Case 2: Suppose that ๐ต is true. โฎ (argumentation) โฎ Then ๐ is true. 2 6. Prove ๐ if and only if ๐ Theorem. Let ๐ and ๐ be statements. โฆ (hypotheses) โฆ Prove ๐ if and only if ๐. Symbols: ๐ โโ ๐ Proof. โ Suppose that ๐ is true. โฎ (argumentation) โฎ Then ๐ is true. โ Suppose that ๐ is true. โฎ (argumentation) โฎ Then ๐ is true. 7. Prove a Statement with a For All Quantifier Theorem. Let ๐ (๐ฅ) be a statement with free variable ๐ฅ, and let ๐ be a collection of possible values of ๐ฅ. โฆ (hypotheses) โฆ Prove that for all ๐ฅ in ๐ , the statement ๐ (๐ฅ) holds. Symbols: (โ๐ฅ in ๐ )๐ (๐ฅ) Proof. Let ๐ be in ๐ . โฎ (argumentation) โฎ Then ๐ (๐) is true. 3 8. Prove a Statement with a There Exists Quantifier Theorem. Let ๐ (๐ฅ) be a statement with free variable ๐ฅ, and let ๐ be a collection of possible values of ๐ฅ. โฆ (hypotheses) โฆ Prove that there exists some ๐ฅ in ๐ such that the statement ๐ (๐ฅ) holds. Symbols: (โ๐ฅ in ๐ )๐ (๐ฅ) Proof. Let ๐ = โฆ. [Only one example of ๐ is needed.] โฎ (argumentation) โฎ Then ๐ is in ๐ . โฎ (argumentation) โฎ Then ๐ (๐) is true. 9. Prove an Existence and Uniqueness Statement Theorem. Let ๐ (๐ฅ) be a statement with free variable ๐ฅ, and let ๐ be a collection of possible values of ๐ฅ. โฆ (hypotheses) โฆ Prove that there exists a unique ๐ฅ in ๐ such that the statement ๐ (๐ฅ) holds. Symbols: (โ!๐ฅ in ๐ )๐ (๐ฅ) Proof. Uniqueness: Let ๐ and ๐ be in ๐ . Suppose that ๐ (๐) and ๐ (๐) are true. โฎ (argumentation) โฎ Then ๐ = ๐. Existence: Let ๐ = โฆ. [Only one example of ๐ is needed.] โฎ (argumentation) โฎ Then ๐ is in ๐ . โฎ (argumentation) โฎ Then ๐ (๐) is true. 4 10. Prove a Statement with Two Quantifiers โ For All and There Exists Theorem. Let ๐ (๐ฅ, ๐ฆ) be a statement with free variables ๐ฅ and ๐ฆ, let ๐ be a collection of possible values of ๐ฅ and let ๐ be a collection of possible values of ๐ฆ. โฆ (hypotheses) โฆ Prove that for each ๐ฅ in ๐ there exists some ๐ฆ in ๐ such that the statement ๐ (๐ฅ, ๐ฆ) holds. Symbols: (โ๐ฅ in ๐ )(โ๐ฆ in ๐ )๐ (๐ฅ, ๐ฆ) Proof. Let ๐ be in ๐ . โฎ (argumentation) โฎ Let ๐ = โฆ. [Note that ๐ can depend upon ๐.] โฎ (argumentation) โฎ Then ๐ is in ๐ . โฎ (argumentation) โฎ Then ๐ (๐, ๐) is true. 11. Prove a Statement with Two Quantifiers โ There Exists and For All Theorem. Let ๐ (๐ฅ, ๐ฆ) be a statement with free variables ๐ฅ and ๐ฆ, let ๐ be a collection of possible values of ๐ฅ and let ๐ be a collection of possible values of ๐ฆ. โฆ (hypotheses) โฆ Prove that there is some ๐ฅ in ๐ such that for each ๐ฆ in ๐ , the statement ๐ (๐ฅ, ๐ฆ) holds. Symbols: (โ๐ฅ in ๐ )(โ๐ฆ in ๐ )๐ (๐ฅ, ๐ฆ) Proof. Let ๐ = โฆ. [Only one example of ๐ is needed.] โฎ (argumentation) โฎ Then ๐ is in ๐ . โฎ (argumentation) โฎ Let ๐ be in ๐ . [Note that ๐ is independent of ๐.] โฎ (argumentation) โฎ Then ๐ (๐, ๐) is true. 5 12. Prove that One Set is a Subset of Another Set Theorem. Let ๐ด and ๐ต be sets. โฆ (hypotheses) โฆ Prove that ๐ด โ ๐ต. Symbols: (โ๐ฅ โ ๐ด)(๐ฅ โ ๐ต) Proof. Let ๐ฅ โ ๐ด. โฎ (argumentation) โฎ Then ๐ฅ โ ๐ต. Hence ๐ด โ ๐ต. 13. Prove that Two Sets are Equal Theorem. Let ๐ด and ๐ต be sets. โฆ (hypotheses) โฆ Prove that ๐ด = ๐ต. Symbols: (โ๐ฅ โ ๐ด)(๐ฅ โ ๐ต) โง (โ๐ฅ โ ๐ต)(๐ฅ โ ๐ด) Proof. Let ๐ฅ โ ๐ด. โฎ (argumentation) โฎ Then ๐ฅ โ ๐ต. Hence ๐ด โ ๐ต. Next, Let ๐ฆ โ ๐ต. โฎ (argumentation) โฎ Then ๐ฆ โ ๐ด. Hence ๐ต โ ๐ด. We conclude that ๐ด = ๐ต. 6 14. Prove that Two Functions are Equal Theorem. Let ๐ โถ ๐ด โ ๐ต and ๐ โถ ๐ถ โ ๐ท be functions. โฆ (hypotheses) โฆ Prove that ๐ = ๐. Symbols: ๐ด = ๐ถ โง ๐ต = ๐ท โง (โ๐ฅ โ ๐ด)(๐ (๐ฅ) = ๐(๐ฅ)) Proof. (Argumentation) โฎ Therefore ๐ด = ๐ถ. Hence ๐ and ๐ have the same domain. โฎ (argumentation) โฎ Therefore ๐ต = ๐ท. Hence ๐ and ๐ have the same codomain. Let ๐ โ ๐ด = ๐ถ. โฎ (argumentation) โฎ Then ๐ (๐) = ๐(๐). Therefore ๐ = ๐. 15. Prove that a Functions has a Right Inverse. Theorem. Let ๐ โถ ๐ด โ ๐ต be a function. โฆ (hypotheses) โฆ Prove that ๐ has a right inverse. Symbols: (โ๐ โถ ๐ต โ ๐ด)(โ๐ฅ โ ๐ต)(๐ (๐(๐ฅ)) = ๐ฅ) Proof. Let ๐ โถ ๐ต โ ๐ด be defined by โฆ. [Only one example of ๐ is needed.] Let ๐ฆ โ ๐ต. โฎ (Argumentation) โฎ Then ๐ (๐(๐ฆ)) = ๐ฆ. Hence ๐ โฆ ๐ = 1๐ต . Therefore ๐ is a right inverse of ๐ . 7 16. Prove that a Functions has a Left Inverse. Theorem. Let ๐ โถ ๐ด โ ๐ต be a function. โฆ (hypotheses) โฆ Prove that ๐ has a left inverse. Symbols: (โ๐ โถ ๐ต โ ๐ด)(โ๐ฅ โ ๐ด)(๐(๐ (๐ฅ)) = ๐ฅ) Proof. Let ๐ โถ ๐ต โ ๐ด be defined by โฆ. [Only one example of ๐ is needed.] Let ๐ฅ โ ๐ด. โฎ (Argumentation) โฎ Then ๐(๐ (๐ฅ)) = ๐ฅ. Hence ๐ โฆ ๐ = 1๐ด . Therefore ๐ is a left inverse of ๐ . 17. Prove that a Functions has an Inverse. Theorem. Let ๐ โถ ๐ด โ ๐ต be a function. โฆ (hypotheses) โฆ Prove that ๐ has an inverse. Symbols: (โ๐ โถ ๐ต โ ๐ด)[(โ๐ฅ โ ๐ด)(๐(๐ (๐ฅ)) = ๐ฅ) โง (โ๐ฅ โ ๐ต)(๐ (๐(๐ฅ)) = ๐ฅ)] Proof. Let ๐ โถ ๐ต โ ๐ด be defined by โฆ. Let ๐ฅ โ ๐ต. โฎ (Argumentation) โฎ Then ๐ (๐(๐ฅ)) = ๐ฅ. Hence ๐ โฆ ๐ = 1๐ต . Therefore ๐ is a right inverse of ๐ . Let ๐ฅ โ ๐ด. โฎ (Argumentation) โฎ Then ๐(๐ (๐ฅ)) = ๐ฅ. Hence ๐ โฆ ๐ = 1๐ด . Therefore ๐ is a left inverse of ๐ . We conclude that ๐ is an inverse of ๐ . 8 18. Prove that a Function is Injective Theorem. Let ๐ด and ๐ต be sets, and let ๐ โถ ๐ด โ ๐ต be a function. โฆ (hypotheses) โฆ Prove that ๐ is injective. Symbols: (โ๐ฅ, ๐ฆ โ ๐ด)(๐ (๐ฅ) = ๐ (๐ฆ) โ ๐ฅ = ๐ฆ) Proof. Let ๐ฅ, ๐ฆ โ ๐ด. Suppose that ๐ (๐ฅ) = ๐ (๐ฆ). โฎ (argumentation) โฎ Then ๐ฅ = ๐ฆ. Hence ๐ is injective. 19. Prove that a Function is Surjective Theorem. Let ๐ด and ๐ต be sets, and let ๐ โถ ๐ด โ ๐ต be a function. โฆ (hypotheses) โฆ Prove that ๐ is surjective. Symbols: (โ๐ โ ๐ต)(โ๐ โ ๐ด)(๐ (๐) = ๐) Proof. Let ๐ โ ๐ต. โฎ Let ๐ = โฆ. โฎ (argumentation) โฎ Then ๐ (๐) = ๐. Hence ๐ is surjective. 9 20. Prove that a Function is Bijective Theorem. Let ๐ด and ๐ต be sets, and let ๐ โถ ๐ด โ ๐ต be a function. โฆ (hypotheses) โฆ Prove that ๐ is injective. Symbols: (โ๐ฅ, ๐ฆ โ ๐ด)(๐ (๐ฅ) = ๐ (๐ฆ) โ ๐ฅ = ๐ฆ) โง (โ๐ โ ๐ต)(โ๐ โ ๐ด)(๐ (๐) = ๐) Proof. Let ๐ฅ, ๐ฆ โ ๐ด. Suppose that ๐ (๐ฅ) = ๐ (๐ฆ). โฎ (argumentation) โฎ Then ๐ฅ = ๐ฆ. Hence ๐ is injective. Let ๐ โ ๐ต. โฎ Let ๐ = โฆ. โฎ (argumentation) โฎ Then ๐ (๐) = ๐. Hence ๐ is surjective. We conclude that ๐ is bijective. 21. Prove that Two Relations are Equal Theorem. Let ๐ด and ๐ต be sets, and let ๐ and ๐ be relations from ๐ด to ๐ต. โฆ (hypotheses) โฆ Prove that ๐ = ๐. Symbols: (โ๐ฅ, ๐ฆ โ ๐ด)(๐ฅ ๐ ๐ฆ โโ ๐ฅ ๐ ๐ฆ) Proof. Let ๐ฅ โ ๐ด and ๐ฆ โ ๐ต. First, suppose that ๐ฅ ๐ ๐ฆ. โฎ (argumentation) โฎ Then ๐ฅ ๐ ๐ฆ. Second, suppose that ๐ฅ ๐ ๐ฆ. โฎ (argumentation) โฎ Then ๐ฅ ๐ ๐ฆ. Therefore ๐ = ๐. 10 22. Prove that a Relation is Reflexive Theorem. Let ๐ด be a set, and let ๐ be a relation on ๐ด. โฆ (hypotheses) โฆ Prove that ๐ is reflexive. Symbols: (โ๐ฅ โ ๐ด)(๐ฅ ๐ ๐ฅ) Proof. Let ๐ฅ โ ๐ด. โฎ (argumentation) โฎ Then ๐ฅ ๐ ๐ฅ. Hence ๐ is reflexive. 23. Prove that a Relation is Symmetric Theorem. Let ๐ด be a set, and let ๐ be a relation on ๐ด. โฆ (hypotheses) โฆ Prove that ๐ is symmetric. Symbols: (โ๐ฅ, ๐ฆ โ ๐ด)(๐ฅ ๐ ๐ฆ โ ๐ฆ ๐ ๐ฅ) Proof. Let ๐ฅ, ๐ฆ โ ๐ด. Suppose that ๐ฅ ๐ ๐ฆ. โฎ (argumentation) โฎ Then ๐ฆ ๐ ๐ฅ. Hence ๐ is symmetric. 24. Prove that a Relation is Transitive Theorem. Let ๐ด be a set, and let ๐ be a relation on ๐ด. โฆ (hypotheses) โฆ Prove that ๐ is transitive. Symbols: (โ๐ฅ, ๐ฆ, ๐ง โ ๐ด)([๐ฅ ๐ ๐ฆ โง ๐ฆ ๐ ๐ง] โ ๐ฅ ๐ ๐ง) Proof. Let ๐ฅ, ๐ฆ, ๐ง โ ๐ด. Suppose that ๐ฅ ๐ ๐ฆ and ๐ฆ ๐ ๐ง. โฎ (argumentation) โฎ Then ๐ฅ ๐ ๐ง. Hence ๐ is transitive. 11 25. Prove that a Relation is an Equivalence Relation Theorem. Let ๐ด be a set, and let ๐ be a relation on ๐ด. โฆ (hypotheses) โฆ Prove that ๐ is an equivalence relation. Symbols: (โ๐ฅ, ๐ฆ, ๐ง โ ๐ด)([๐ฅ ๐ ๐ฅ] โง [๐ฅ ๐ ๐ฆ โ ๐ฆ ๐ ๐ฅ] โง [(๐ฅ ๐ ๐ฆ โง ๐ฆ ๐ ๐ง) โ ๐ฅ ๐ ๐ง]) Proof. Let ๐ฅ, ๐ฆ, ๐ง โ ๐ด. โฎ (argumentation) โฎ Then ๐ฅ ๐ ๐ฅ. Hence ๐ is reflexive. Suppose that ๐ฅ ๐ ๐ฆ. โฎ (argumentation) โฎ Then ๐ฆ ๐ ๐ฅ. Hence ๐ is symmetric. Suppose that ๐ฅ ๐ ๐ฆ and ๐ฆ ๐ ๐ง. โฎ (argumentation) โฎ Then ๐ฅ ๐ ๐ง. Hence ๐ is transitive. We conclude that ๐ is an equivalence relation. 26. Prove a Statement Using Mathematical Induction. Theorem. Let ๐ (๐) be a statement with free variable ๐, where ๐ is a natural number. โฆ (hypotheses) โฆ Prove that for all ๐ in โ, the statement ๐ (๐) holds. Symbols: ๐ (1) โง (โ๐ โ โ)(๐ (๐) โ ๐ (๐ + 1)) Proof. (Argumentation) โฎ Then ๐ (1) is true. Let ๐ โ โ. Suppose that ๐ (๐) is true. โฎ (argumentation) โฎ Then ๐ (๐ + 1) is true. 12 27. Prove that Two Sets Have the Same Cardinality โ via Bijectivity. Theorem. Let ๐ด and ๐ต be sets. โฆ (hypotheses) โฆ Prove that ๐ด โผ ๐ต. Symbols: (โ๐ โถ ๐ด โ ๐ต)[(โ๐ฅ, ๐ฆ โ ๐ด)(๐ (๐ฅ) = ๐ (๐ฆ) โ ๐ฅ = ๐ฆ) โง (โ๐ โ ๐ต)(โ๐ โ ๐ด)(๐ (๐) = ๐)] Proof. Let ๐ โถ ๐ด โ ๐ต be defined by โฆ. [Only one example of ๐ is needed.] Let ๐ฅ, ๐ฆ โ ๐ด. Suppose that ๐ (๐ฅ) = ๐ (๐ฆ). โฎ (argumentation) โฎ Then ๐ฅ = ๐ฆ. Hence ๐ is injective. Let ๐ โ ๐ต. โฎ Let ๐ = โฆ. โฎ (argumentation) โฎ Then ๐ (๐) = ๐. Hence ๐ is surjective. We conclude that ๐ is bijective. It follows that ๐ด โผ ๐ต. 28. Prove that Two Sets Have the Same Cardinality โ via Inverse Functions. Theorem. Let ๐ด and ๐ต be sets. โฆ (hypotheses) โฆ Prove that ๐ด โผ ๐ต. Symbols: (โ๐ โถ ๐ด โ ๐ต)(โ๐ โถ ๐ต โ ๐ด)[(โ๐ฅ โ ๐ด)(๐(๐ (๐ฅ)) = ๐ฅ) โง (โ๐ฅ โ ๐ต)(๐ (๐(๐ฅ)) = ๐ฅ)] Proof. Let ๐ โถ ๐ด โ ๐ต be defined by โฆ. [Only one example of ๐ is needed.] Let ๐ โถ ๐ต โ ๐ด be defined by โฆ. Let ๐ฆ โ ๐ต. โฎ (Argumentation) โฎ Then ๐ (๐(๐ฆ)) = ๐ฆ. Hence ๐ โฆ ๐ = 1๐ต . Therefore ๐ is a right inverse of ๐ . Let ๐ฅ โ ๐ด. โฎ (Argumentation) โฎ Then ๐(๐ (๐ฅ)) = ๐ฅ. Hence ๐ โฆ ๐ = 1๐ด . Therefore ๐ is a left inverse of ๐ . We conclude that ๐ is an inverse of ๐ . Therefore ๐ is bijective. It follows that ๐ด โผ ๐ต. 13
© Copyright 2026 Paperzz