Proofs Strategies For PROOFS AND

Proofs Strategies For
PROOFS AND FUNDAMENTALS
February 9, 2017
1. Prove if ๐‘ƒ then ๐‘„
โ€”
via Direct Proof
Theorem. Let ๐‘ƒ and ๐‘„ be statements. โ€ฆ (hypotheses) โ€ฆ Prove if ๐‘ƒ then ๐‘„.
Symbols: ๐‘ƒ โ†’ ๐‘„
Proof. Suppose that ๐‘ƒ is true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘„ is true.
2. Prove if ๐‘ƒ then ๐‘„
โ€”
via Proof by Contrapositive
Theorem. Let ๐‘ƒ and ๐‘„ be statements. โ€ฆ (hypotheses) โ€ฆ Prove if ๐‘ƒ then ๐‘„.
Symbols: ๐‘ƒ โ†’ ๐‘„
Proof. Suppose that ๐‘„ is false.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ is false.
3. Prove if ๐‘ƒ then ๐‘„
โ€”
via Proof by Contradiction
Theorem. Let ๐‘ƒ and ๐‘„ be statements. โ€ฆ (hypotheses) โ€ฆ Prove if ๐‘ƒ then ๐‘„.
Symbols: ๐‘ƒ โ†’ ๐‘„
Proof. Suppose that ๐‘ƒ is true. Suppose that ๐‘„ is false.
โ‹ฎ
(argumentation)
โ‹ฎ
We have reached a contradiction. Therefore ๐‘„ must be true.
1
4. Prove if ๐‘ƒ , then ๐ด or ๐ต
Theorem. Let ๐‘ƒ , ๐ด and ๐ต be statements. โ€ฆ (hypotheses) โ€ฆ Prove if ๐‘ƒ , then ๐ด or ๐ต.
Symbols: ๐‘ƒ โ†’ (๐ด โˆจ ๐ต)
Proof. Suppose that ๐‘ƒ is true. Suppose that ๐ด is false.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐ต is true.
5. Prove if ๐ด or ๐ต, then ๐‘„
Theorem. Let ๐ด, ๐ต and ๐‘„ be statements. โ€ฆ (hypotheses) โ€ฆ Prove if ๐ด or ๐ต, then ๐‘„.
Symbols: (๐ด โˆจ ๐ต) โ†’ ๐‘„
Proof. Suppose that ๐ด or ๐ต are true.
Case 1: Suppose that ๐ด is true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘„ is true.
Case 2: Suppose that ๐ต is true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘„ is true.
2
6. Prove ๐‘ƒ if and only if ๐‘„
Theorem. Let ๐‘ƒ and ๐‘„ be statements. โ€ฆ (hypotheses) โ€ฆ Prove ๐‘ƒ if and only if ๐‘„.
Symbols: ๐‘ƒ โ†โ†’ ๐‘„
Proof. โ‡’ Suppose that ๐‘ƒ is true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘„ is true.
โ‡ Suppose that ๐‘„ is true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ is true.
7. Prove a Statement with a For All Quantifier
Theorem. Let ๐‘ƒ (๐‘ฅ) be a statement with free variable ๐‘ฅ, and let ๐‘ˆ be a collection of possible
values of ๐‘ฅ. โ€ฆ (hypotheses) โ€ฆ Prove that for all ๐‘ฅ in ๐‘ˆ , the statement ๐‘ƒ (๐‘ฅ) holds.
Symbols: (โˆ€๐‘ฅ in ๐‘ˆ )๐‘ƒ (๐‘ฅ)
Proof. Let ๐‘ be in ๐‘ˆ .
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ (๐‘) is true.
3
8. Prove a Statement with a There Exists Quantifier
Theorem. Let ๐‘ƒ (๐‘ฅ) be a statement with free variable ๐‘ฅ, and let ๐‘ˆ be a collection of possible
values of ๐‘ฅ. โ€ฆ (hypotheses) โ€ฆ Prove that there exists some ๐‘ฅ in ๐‘ˆ such that the statement
๐‘ƒ (๐‘ฅ) holds.
Symbols: (โˆƒ๐‘ฅ in ๐‘ˆ )๐‘ƒ (๐‘ฅ)
Proof. Let ๐‘ = โ€ฆ. [Only one example of ๐‘ is needed.]
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ is in ๐‘ˆ .
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ (๐‘) is true.
9. Prove an Existence and Uniqueness Statement
Theorem. Let ๐‘ƒ (๐‘ฅ) be a statement with free variable ๐‘ฅ, and let ๐‘ˆ be a collection of possible values of ๐‘ฅ. โ€ฆ (hypotheses) โ€ฆ Prove that there exists a unique ๐‘ฅ in ๐‘ˆ such that the
statement ๐‘ƒ (๐‘ฅ) holds.
Symbols: (โˆƒ!๐‘ฅ in ๐‘ˆ )๐‘ƒ (๐‘ฅ)
Proof. Uniqueness:
Let ๐‘Ž and ๐‘ be in ๐‘ˆ . Suppose that ๐‘ƒ (๐‘Ž) and ๐‘ƒ (๐‘) are true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘Ž = ๐‘.
Existence:
Let ๐‘ = โ€ฆ. [Only one example of ๐‘ is needed.]
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ is in ๐‘ˆ .
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ (๐‘) is true.
4
10. Prove a Statement with Two Quantifiers
โ€”
For All and There Exists
Theorem. Let ๐‘ƒ (๐‘ฅ, ๐‘ฆ) be a statement with free variables ๐‘ฅ and ๐‘ฆ, let ๐‘ˆ be a collection of
possible values of ๐‘ฅ and let ๐‘‰ be a collection of possible values of ๐‘ฆ. โ€ฆ (hypotheses) โ€ฆ
Prove that for each ๐‘ฅ in ๐‘ˆ there exists some ๐‘ฆ in ๐‘‰ such that the statement ๐‘ƒ (๐‘ฅ, ๐‘ฆ) holds.
Symbols: (โˆ€๐‘ฅ in ๐‘ˆ )(โˆƒ๐‘ฆ in ๐‘‰ )๐‘ƒ (๐‘ฅ, ๐‘ฆ)
Proof. Let ๐‘ be in ๐‘ˆ .
โ‹ฎ
(argumentation)
โ‹ฎ
Let ๐‘‘ = โ€ฆ. [Note that ๐‘‘ can depend upon ๐‘.]
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘‘ is in ๐‘‰ .
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ (๐‘, ๐‘‘) is true.
11. Prove a Statement with Two Quantifiers
โ€”
There Exists and For All
Theorem. Let ๐‘ƒ (๐‘ฅ, ๐‘ฆ) be a statement with free variables ๐‘ฅ and ๐‘ฆ, let ๐‘ˆ be a collection of
possible values of ๐‘ฅ and let ๐‘‰ be a collection of possible values of ๐‘ฆ. โ€ฆ (hypotheses) โ€ฆ
Prove that there is some ๐‘ฅ in ๐‘ˆ such that for each ๐‘ฆ in ๐‘‰ , the statement ๐‘ƒ (๐‘ฅ, ๐‘ฆ) holds.
Symbols: (โˆƒ๐‘ฅ in ๐‘ˆ )(โˆ€๐‘ฆ in ๐‘‰ )๐‘ƒ (๐‘ฅ, ๐‘ฆ)
Proof. Let ๐‘ = โ€ฆ. [Only one example of ๐‘ is needed.]
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ is in ๐‘ˆ .
โ‹ฎ
(argumentation)
โ‹ฎ
Let ๐‘‘ be in ๐‘‰ . [Note that ๐‘‘ is independent of ๐‘.]
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ (๐‘, ๐‘‘) is true.
5
12. Prove that One Set is a Subset of Another Set
Theorem. Let ๐ด and ๐ต be sets. โ€ฆ (hypotheses) โ€ฆ Prove that ๐ด โІ ๐ต.
Symbols: (โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘ฅ โˆˆ ๐ต)
Proof. Let ๐‘ฅ โˆˆ ๐ด.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ โˆˆ ๐ต. Hence ๐ด โІ ๐ต.
13. Prove that Two Sets are Equal
Theorem. Let ๐ด and ๐ต be sets. โ€ฆ (hypotheses) โ€ฆ Prove that ๐ด = ๐ต.
Symbols: (โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘ฅ โˆˆ ๐ต) โˆง (โˆ€๐‘ฅ โˆˆ ๐ต)(๐‘ฅ โˆˆ ๐ด)
Proof. Let ๐‘ฅ โˆˆ ๐ด.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ โˆˆ ๐ต. Hence ๐ด โІ ๐ต.
Next, Let ๐‘ฆ โˆˆ ๐ต.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฆ โˆˆ ๐ด. Hence ๐ต โІ ๐ด.
We conclude that ๐ด = ๐ต.
6
14. Prove that Two Functions are Equal
Theorem. Let ๐‘“ โˆถ ๐ด โ†’ ๐ต and ๐‘” โˆถ ๐ถ โ†’ ๐ท be functions. โ€ฆ (hypotheses) โ€ฆ Prove that
๐‘“ = ๐‘”.
Symbols: ๐ด = ๐ถ โˆง ๐ต = ๐ท โˆง (โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘“ (๐‘ฅ) = ๐‘”(๐‘ฅ))
Proof. (Argumentation)
โ‹ฎ
Therefore ๐ด = ๐ถ. Hence ๐‘“ and ๐‘” have the same domain.
โ‹ฎ
(argumentation)
โ‹ฎ
Therefore ๐ต = ๐ท. Hence ๐‘“ and ๐‘” have the same codomain.
Let ๐‘Ž โˆˆ ๐ด = ๐ถ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘“ (๐‘Ž) = ๐‘”(๐‘Ž).
Therefore ๐‘“ = ๐‘”.
15. Prove that a Functions has a Right Inverse.
Theorem. Let ๐‘“ โˆถ ๐ด โ†’ ๐ต be a function. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘“ has a right
inverse.
Symbols: (โˆƒ๐‘” โˆถ ๐ต โ†’ ๐ด)(โˆ€๐‘ฅ โˆˆ ๐ต)(๐‘“ (๐‘”(๐‘ฅ)) = ๐‘ฅ)
Proof. Let ๐‘” โˆถ ๐ต โ†’ ๐ด be defined by โ€ฆ. [Only one example of ๐‘” is needed.]
Let ๐‘ฆ โˆˆ ๐ต.
โ‹ฎ
(Argumentation)
โ‹ฎ
Then ๐‘“ (๐‘”(๐‘ฆ)) = ๐‘ฆ. Hence ๐‘“ โ—ฆ ๐‘” = 1๐ต .
Therefore ๐‘” is a right inverse of ๐‘“ .
7
16. Prove that a Functions has a Left Inverse.
Theorem. Let ๐‘“ โˆถ ๐ด โ†’ ๐ต be a function. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘“ has a left inverse.
Symbols: (โˆƒ๐‘” โˆถ ๐ต โ†’ ๐ด)(โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘”(๐‘“ (๐‘ฅ)) = ๐‘ฅ)
Proof. Let ๐‘” โˆถ ๐ต โ†’ ๐ด be defined by โ€ฆ. [Only one example of ๐‘” is needed.]
Let ๐‘ฅ โˆˆ ๐ด.
โ‹ฎ
(Argumentation)
โ‹ฎ
Then ๐‘”(๐‘“ (๐‘ฅ)) = ๐‘ฅ. Hence ๐‘” โ—ฆ ๐‘“ = 1๐ด .
Therefore ๐‘” is a left inverse of ๐‘“ .
17. Prove that a Functions has an Inverse.
Theorem. Let ๐‘“ โˆถ ๐ด โ†’ ๐ต be a function. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘“ has an inverse.
Symbols: (โˆƒ๐‘” โˆถ ๐ต โ†’ ๐ด)[(โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘”(๐‘“ (๐‘ฅ)) = ๐‘ฅ) โˆง (โˆ€๐‘ฅ โˆˆ ๐ต)(๐‘“ (๐‘”(๐‘ฅ)) = ๐‘ฅ)]
Proof. Let ๐‘” โˆถ ๐ต โ†’ ๐ด be defined by โ€ฆ.
Let ๐‘ฅ โˆˆ ๐ต.
โ‹ฎ
(Argumentation)
โ‹ฎ
Then ๐‘“ (๐‘”(๐‘ฅ)) = ๐‘ฅ. Hence ๐‘“ โ—ฆ ๐‘” = 1๐ต .
Therefore ๐‘” is a right inverse of ๐‘“ .
Let ๐‘ฅ โˆˆ ๐ด.
โ‹ฎ
(Argumentation)
โ‹ฎ
Then ๐‘”(๐‘“ (๐‘ฅ)) = ๐‘ฅ. Hence ๐‘” โ—ฆ ๐‘“ = 1๐ด .
Therefore ๐‘” is a left inverse of ๐‘“ .
We conclude that ๐‘” is an inverse of ๐‘“ .
8
18. Prove that a Function is Injective
Theorem. Let ๐ด and ๐ต be sets, and let ๐‘“ โˆถ ๐ด โ†’ ๐ต be a function. โ€ฆ (hypotheses) โ€ฆ Prove
that ๐‘“ is injective.
Symbols: (โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐ด)(๐‘“ (๐‘ฅ) = ๐‘“ (๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ)
Proof. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด. Suppose that ๐‘“ (๐‘ฅ) = ๐‘“ (๐‘ฆ).
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ = ๐‘ฆ. Hence ๐‘“ is injective.
19. Prove that a Function is Surjective
Theorem. Let ๐ด and ๐ต be sets, and let ๐‘“ โˆถ ๐ด โ†’ ๐ต be a function. โ€ฆ (hypotheses) โ€ฆ Prove
that ๐‘“ is surjective.
Symbols: (โˆ€๐‘ โˆˆ ๐ต)(โˆƒ๐‘Ž โˆˆ ๐ด)(๐‘“ (๐‘Ž) = ๐‘)
Proof. Let ๐‘ โˆˆ ๐ต.
โ‹ฎ
Let ๐‘Ž = โ€ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘“ (๐‘Ž) = ๐‘. Hence ๐‘“ is surjective.
9
20. Prove that a Function is Bijective
Theorem. Let ๐ด and ๐ต be sets, and let ๐‘“ โˆถ ๐ด โ†’ ๐ต be a function. โ€ฆ (hypotheses) โ€ฆ Prove
that ๐‘“ is injective.
Symbols: (โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐ด)(๐‘“ (๐‘ฅ) = ๐‘“ (๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ) โˆง (โˆ€๐‘ โˆˆ ๐ต)(โˆƒ๐‘Ž โˆˆ ๐ด)(๐‘“ (๐‘Ž) = ๐‘)
Proof. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด. Suppose that ๐‘“ (๐‘ฅ) = ๐‘“ (๐‘ฆ).
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ = ๐‘ฆ. Hence ๐‘“ is injective.
Let ๐‘ โˆˆ ๐ต.
โ‹ฎ
Let ๐‘Ž = โ€ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘“ (๐‘Ž) = ๐‘. Hence ๐‘“ is surjective.
We conclude that ๐‘“ is bijective.
21. Prove that Two Relations are Equal
Theorem. Let ๐ด and ๐ต be sets, and let ๐‘… and ๐‘† be relations from ๐ด to ๐ต. โ€ฆ (hypotheses)
โ€ฆ Prove that ๐‘… = ๐‘†.
Symbols: (โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐ด)(๐‘ฅ ๐‘… ๐‘ฆ โ†โ†’ ๐‘ฅ ๐‘† ๐‘ฆ)
Proof. Let ๐‘ฅ โˆˆ ๐ด and ๐‘ฆ โˆˆ ๐ต. First, suppose that ๐‘ฅ ๐‘… ๐‘ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ ๐‘† ๐‘ฆ.
Second, suppose that ๐‘ฅ ๐‘† ๐‘ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ ๐‘… ๐‘ฆ.
Therefore ๐‘… = ๐‘†.
10
22. Prove that a Relation is Reflexive
Theorem. Let ๐ด be a set, and let ๐‘… be a relation on ๐ด. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘… is
reflexive.
Symbols: (โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘ฅ ๐‘… ๐‘ฅ)
Proof. Let ๐‘ฅ โˆˆ ๐ด.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ ๐‘… ๐‘ฅ. Hence ๐‘… is reflexive.
23. Prove that a Relation is Symmetric
Theorem. Let ๐ด be a set, and let ๐‘… be a relation on ๐ด. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘… is
symmetric.
Symbols: (โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐ด)(๐‘ฅ ๐‘… ๐‘ฆ โ†’ ๐‘ฆ ๐‘… ๐‘ฅ)
Proof. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด. Suppose that ๐‘ฅ ๐‘… ๐‘ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฆ ๐‘… ๐‘ฅ. Hence ๐‘… is symmetric.
24. Prove that a Relation is Transitive
Theorem. Let ๐ด be a set, and let ๐‘… be a relation on ๐ด. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘… is
transitive.
Symbols: (โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ด)([๐‘ฅ ๐‘… ๐‘ฆ โˆง ๐‘ฆ ๐‘… ๐‘ง] โ†’ ๐‘ฅ ๐‘… ๐‘ง)
Proof. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ด. Suppose that ๐‘ฅ ๐‘… ๐‘ฆ and ๐‘ฆ ๐‘… ๐‘ง.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ ๐‘… ๐‘ง. Hence ๐‘… is transitive.
11
25. Prove that a Relation is an Equivalence Relation
Theorem. Let ๐ด be a set, and let ๐‘… be a relation on ๐ด. โ€ฆ (hypotheses) โ€ฆ Prove that ๐‘… is
an equivalence relation.
Symbols: (โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ด)([๐‘ฅ ๐‘… ๐‘ฅ] โˆง [๐‘ฅ ๐‘… ๐‘ฆ โ†’ ๐‘ฆ ๐‘… ๐‘ฅ] โˆง [(๐‘ฅ ๐‘… ๐‘ฆ โˆง ๐‘ฆ ๐‘… ๐‘ง) โ†’ ๐‘ฅ ๐‘… ๐‘ง])
Proof. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ด.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ ๐‘… ๐‘ฅ. Hence ๐‘… is reflexive.
Suppose that ๐‘ฅ ๐‘… ๐‘ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฆ ๐‘… ๐‘ฅ. Hence ๐‘… is symmetric.
Suppose that ๐‘ฅ ๐‘… ๐‘ฆ and ๐‘ฆ ๐‘… ๐‘ง.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ ๐‘… ๐‘ง. Hence ๐‘… is transitive.
We conclude that ๐‘… is an equivalence relation.
26. Prove a Statement Using Mathematical Induction.
Theorem. Let ๐‘ƒ (๐‘›) be a statement with free variable ๐‘›, where ๐‘› is a natural number. โ€ฆ
(hypotheses) โ€ฆ Prove that for all ๐‘› in โ„•, the statement ๐‘ƒ (๐‘›) holds.
Symbols: ๐‘ƒ (1) โˆง (โˆ€๐‘› โˆˆ โ„•)(๐‘ƒ (๐‘›) โ†’ ๐‘ƒ (๐‘› + 1))
Proof. (Argumentation)
โ‹ฎ
Then ๐‘ƒ (1) is true.
Let ๐‘› โˆˆ โ„•. Suppose that ๐‘ƒ (๐‘›) is true.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ƒ (๐‘› + 1) is true.
12
27. Prove that Two Sets Have the Same Cardinality
โ€”
via Bijectivity.
Theorem. Let ๐ด and ๐ต be sets. โ€ฆ (hypotheses) โ€ฆ Prove that ๐ด โˆผ ๐ต.
Symbols: (โˆƒ๐‘“ โˆถ ๐ด โ†’ ๐ต)[(โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐ด)(๐‘“ (๐‘ฅ) = ๐‘“ (๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ) โˆง (โˆ€๐‘ โˆˆ ๐ต)(โˆƒ๐‘Ž โˆˆ ๐ด)(๐‘“ (๐‘Ž) =
๐‘)]
Proof. Let ๐‘“ โˆถ ๐ด โ†’ ๐ต be defined by โ€ฆ. [Only one example of ๐‘“ is needed.]
Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด. Suppose that ๐‘“ (๐‘ฅ) = ๐‘“ (๐‘ฆ).
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘ฅ = ๐‘ฆ. Hence ๐‘“ is injective.
Let ๐‘ โˆˆ ๐ต.
โ‹ฎ
Let ๐‘Ž = โ€ฆ.
โ‹ฎ
(argumentation)
โ‹ฎ
Then ๐‘“ (๐‘Ž) = ๐‘. Hence ๐‘“ is surjective.
We conclude that ๐‘“ is bijective. It follows that ๐ด โˆผ ๐ต.
28. Prove that Two Sets Have the Same Cardinality
โ€”
via Inverse Functions.
Theorem. Let ๐ด and ๐ต be sets. โ€ฆ (hypotheses) โ€ฆ Prove that ๐ด โˆผ ๐ต.
Symbols: (โˆƒ๐‘“ โˆถ ๐ด โ†’ ๐ต)(โˆƒ๐‘” โˆถ ๐ต โ†’ ๐ด)[(โˆ€๐‘ฅ โˆˆ ๐ด)(๐‘”(๐‘“ (๐‘ฅ)) = ๐‘ฅ) โˆง (โˆ€๐‘ฅ โˆˆ ๐ต)(๐‘“ (๐‘”(๐‘ฅ)) = ๐‘ฅ)]
Proof. Let ๐‘“ โˆถ ๐ด โ†’ ๐ต be defined by โ€ฆ. [Only one example of ๐‘“ is needed.]
Let ๐‘” โˆถ ๐ต โ†’ ๐ด be defined by โ€ฆ.
Let ๐‘ฆ โˆˆ ๐ต.
โ‹ฎ
(Argumentation)
โ‹ฎ
Then ๐‘“ (๐‘”(๐‘ฆ)) = ๐‘ฆ. Hence ๐‘“ โ—ฆ ๐‘” = 1๐ต .
Therefore ๐‘” is a right inverse of ๐‘“ .
Let ๐‘ฅ โˆˆ ๐ด.
โ‹ฎ
(Argumentation)
โ‹ฎ
Then ๐‘”(๐‘“ (๐‘ฅ)) = ๐‘ฅ. Hence ๐‘” โ—ฆ ๐‘“ = 1๐ด .
Therefore ๐‘” is a left inverse of ๐‘“ .
We conclude that ๐‘” is an inverse of ๐‘“ . Therefore ๐‘“ is bijective. It follows that ๐ด โˆผ ๐ต.
13