Let X and Y be two discrete random variables defined on the same sample space. The joint probability mass function p x, y is defined by p x, y P X x and Y y We must have p x, y 0 and p x, y 1 . x y Also P X , Y A x , y A p x, y . 2 Let X be the deductible on an auto policy and Y the deductible on a homeowner’s policy for a particular company. The possible deductibles are $100 and $250 on auto policies, and $0, $100 and $200 on homeowners policies. The joint pmf is: y x 0 100 200 100 .20 .10 .20 250 .05 .15 .30 Then p(100,100) P X 100, Y 100 .10 , P(Y 100) p 100,100 p 250,100 p 100, 200 p 250, 200 .75 4 The marginal probability distributions are defined as pX x y: p x , y 0 p x, y pY y x: p x , y 0 p x, y for each possible x for each possible y 5 y x 0 100 200 pX x 100 .20 .10 .20 .5 250 .05 .15 .30 .5 pY y .25 .25 .50 Let X and Y be two continuous rv’s. The joint probability density function f(x,y) is a function satisfying f x, y 0 and f x, y dxdy 1 . Then P X , Y A f x, y dxdy . A 7 The marginal density functions of X andY are fX x f x, y dy fY y f x, y dx 8 A nut company markets cans of deluxe mixed nuts containing almonds, cashews, and peanuts. Suppose the net weight of each can is exactly 1 lb., but the composition can vary. Let X=weight of almonds and Y=weight of cashews. Let the joint density be 24 xy 0 x 1,0 y 1, x y 1 f x, y otherwise 0 9 This is a valid density (verify), and P X , Y x, y : 0 x 1,0 y 1, x y 0.5 1/2 1/2 x 0 24 xy dydx 1/16 0 1 y 2 24 xy dx 12 y 1 y 0 y 1 fY y 0 0 otherwise 1 x 2 24 xy dx 12 x 1 x 0 x 1 fX x 0 0 otherwise 10 Two rv’s are independent if for every pair of x and y values p x, y p X x pY y (discrete) or f x, y f X x fY y (continuous) 11 For the insurance example, p 100,100 .10 (.5)(.25) p X 100 pY 100 so X and Y are not independent. 12 For the mixed nuts, f 3 / 4, 3 / 4 0 f X 3 / 4 pY 3 / 4 9 /16 2 so X and Y are not independent. To be independent, the density f x, y must have g x h y the form and the region of positive density must be a rectangle whose sides are parallel to the coordinate axis. 13 If X , X , , X are discrete rv’s, the joint pmf is the function 1 2 n p x1 , x2 , , xn P X 1 x1 , , X n xn For continuous rv’s, the joint density is the function f x , x , , x such that for n intervals a , b , ,a , b , 1 1 1 n 2 n n P a1 X 1 b1 , b1 , an X n bn a1 bn f x , 1 , xn dxn dx1 an 14 The random variables X1 , X 2 , , X n are independent if for every subset X i , X i , , X i of the variables (each pair, each triple, and so on), the joint pmf or pdf of the subset is equal to the product of the marginal pmf’s or pdf’s for all possible values of the variables. 1 2 n 15 Let X and Y be two continuous rv’s with joint pdf f(x,y). Then for any x such that f X x 0 , the conditional probability density function of Y given that X=x is fY X y x f x, y , y . fX x For X and Y discrete, replacing the pdf’s by pmf’s gives the conditional probability mass function of Y when X=x. 16 For the mixed nuts example, fY X y x 24 xy 12 x 1 x 2 2y 1 x 2 , 0 y 1 x 17
© Copyright 2026 Paperzz