4.29 Expected profits are highest for Strategy 1 at $650 vs. $550 for Strategy 2 and $400 for Strategy 3. The strategy to recommend would depend on the risk aversion of the investor. The variability of Strategy 1 is much higher than the variability of Strategy 2. The standard deviation of Strategy 1 is $3,927.7856 vs. $567.89 for Strategy 2. Many risk averse investors would likely adopt Strategy 2 with its lower standard deviation and hence, lower risk. 4.45 x = 2.0 sales 4.83 OR x = np = 5(.4) = 2.0 sales a. Joint cumulative probability function at X = 1, Y = 4: FX,Y(1,4) = .09 + .07 + .14 + .23 = .53 b. PY|X(3|0) = .09/.19 = .4737 PY|X(4|0) = .07/.19 = .3684 PY|X(5|0) = .03/.19 = .1579 c. PX|Y(0|4) = .07/.46 = .1522 PX|Y(1|4) = .23/.46 = .5 PX|Y(2|4) = .16/.46 = .3478 d. E(XY) = 0 + 1(3)(.14) + 1(4)(.23) + 1(5)(.10) + 2(3)(.07) + 2(4)(.16) + 2(5)(.11) = 4.64 x 0 .47 2(.34) 1.15 y 3(.3) 4(.46) 5(.24) 3.94 Cov( X , Y ) 4.64 (1.15)(3.94) = .109 The covariance indicates that there is a positive association between the number of lines in the advertisement and the volume of inquiries. e. No, because Cov ( X , Y ) 0 X Return Y Return P(x) Mean of X Var of X StDev of X 0 1 2 P(y) Mean of Y 3 0.09 0.14 0.07 0.3 4 0.07 0.23 0.16 0.46 1.84 0.001656 5 0.03 0.1 0.11 0.24 1.2 0.269664 0.19 0.47 0.34 0 0.47 0.68 1.15 0.251275 0.010575 0.24565 0.5075 0.9 3.94 0.4956309 5.37 180 200 < Z < 0) = .5 – [1- Fz (1)] = .5 -.1587 = .3413 20 245 200 b. P(Z > ) = 1 – FZ(2.25) = .0122 20 c. Smaller a. P( Var of Y StDev of Y 0.26508 0.5364 0.732393 d. P(Z < -1.28) = .1, -1.28 = Xi 200 , 20 Xi = 174.4 5.45 a. E[X] = = 400(.1) = 40, = (400)(.1)(.9) = 6 35 40 ) = P(Z > -.83) = FZ(.83) = .7967 6 40 40 50 40 b. P( <Z< ) = P(0 < Z < 1.67) = Fz (1.67) – FZ(0) 6 6 = 9525 - .5 = .4525 34 40 48 40 c. P( <Z< ) = P(-1 < Z < 1.33) 6 6 = Fz (1.33) – [1 – FZ(1)] = .9082 - .1587 = .7495 d. 40 - 41 P(Z > 5.75 W = aX – bY = 10X – 4Y W a x b y = 10(400) – 4(400) = 2400 2W a 2 2 X b 2 2Y 2abCorr ( X , Y ) X Y =102(900) + 42(1600) – 2(10)(4)(.5)(30)(40) = 67,600 W 67, 600 =260 2000 2400 ) = P(Z > -1.54) = FZ(1.54) = .9382 260 P(Z > 6.23 a. x 300, 000 400 = 26,859,689 499 100 b. P(Z > 825, 000 800, 000 )= P(Z > .93) = .1762 26,859.689 c. P(Z > 780, 000 800, 000 )= P(Z > -.74) = .7704 26,859.689 d. P( 790, 000 800, 000 820, 000 800, 000 ) <Z< 26,859.689 26,859.689 = P(-.37 < Z < .74) = .4147 6.35 a. pˆ (.42)(.58) = .0285 300 .5 .42 )= P(Z > 2.81) = .0025 .0285 .4 .42 .45 .42 c. P( <Z< )= P(-.7 < Z < 1.05) = .6111 .0285 .0285 d. .41 - .43 b. P(Z >
© Copyright 2026 Paperzz