Study Guide Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Name three points that are collinear. c. points S, Q, and R d. points T, S, and R 2. The notation for the length of the segment between P and Q is _______. a. b. c. d. PQ a. points T, Q, and R b. points T, Q, and S 3. If RS = 44 and QS = 68, find QR. a. 14 b. 44 4. If AB = 15 and AC = 23, find the length of c. 112 . a. 1 b. 15 c. 8 d. 38 5. Find the distance between the points (1, 4) and (– 2, –1). a. 10 b. 10 c. 34 d. 34 6. Find the midpoint of the segment with endpoints (9, 8) and (3, 5). a. 3 ( 3, ) 2 b. (12, 13) c. 13 ( 6, ) 2 d. 24 d. (1, –2) 7. Which angle measures approximately 72°? a. b. c. d. 8. If measure of ° and ? °, then what is the a. 45° b. 44° c. 52° d. 47° 9. mJHI = ( )° and mGHI = ( mJHG = 65°. Find mJHI and mGHI. a. mJHI = 19° and mGHI = 46° b. mJHI = 46° and mGHI = 19° c. mJHI = 13° and mGHI = 52° d. mJHI = 52° and mGHI = 13° 10. Which does not name the angle below? a. DCE b. CDE c. ECD d. C 11. In the figure (not drawn to scale), bisects °, and °. Solve for x and find )° and a. b. c. d. 2, 38° 2, 7° 7, 207° 7, 120° Complete the conditional statement to make a true statement. 12. If and are complementary and °, then a. ° b. ° c. ° d. ° 13. If PQ = 3 and PQ + RS = 5, then 3 + RS = 5 is an example of the __________. a. Substitution Property of Equality b. Multiplication Property of Equality c. Transitive Property of Equality d. Reflexive Property of Equality Choose the phrase that completes the following statement as stated by the Point, Line, and Plane Postulates: 14. One plane ____ passes through three noncollinear points. a. always b. never c. sometimes d. Point, Line, and Plane Postulates do not address this topic directly. 15. A line ____contains at least two points. a. always b. never c. sometimes d. Point, Line, and Plane Postulates do not address this topic directly. 16. If two distinct lines intersect, their intersection is ____ one point. a. always b. never c. sometimes d. Point, Line, and Plane Postulates do not address this topic directly. 17. In the figure shown, . Which of the following statements is false? d. Linear Pair Postulate 20. Give the reason for the last statement in the proof. a. b. c. d. 21. A is a. b. c. d. D E B C a. b. c. d. 18. Solve for x. Vertical Angles Congruence Theorem Congruent Complements Theorem Congruent Supplements Theorem Linear Pair Postulate form a linear pair. If , what 22. are supplementary angles. are vertical angles. If what is a. b. c. d. 23. Two lines that are not coplanar and do not intersect are called _____________. a. Parallel b. oblique c. perpendicular d. skew lines Use the figure below. a. 3 b. 6 c. 1 d. 2 19. Give the reason for the last statement in the proof. a. Congruent Supplements Theorem b. Congruent Complements Theorem c. Vertical Angles Congruence Theorem 24. For the cube shown, ___________. a. parallel lines b. oblique lines c. skew lines d. perpendicular lines and are 25. In the figure, and are _________. a. alternate exterior angles b. alternate interior angles 26. In the figure, are __________. c. consecutive interior angles d. corresponding angles d. ° 28. Use the figure to find the measure of a. b. c. d. a. b. c. d. alternate exterior angles consecutive interior angles corresponding angles alternate interior angles 27. Find m1 in the figure below. parallel. ° ° ° ° College Entrance Exam: 29. In the figure below, if l and k are parallel lines, what is the value of x + y? and are a. ° b. ° c. ° d. ° 30. Refer to the figure. Which theorem guarantees l and m are parallel? a. b. c. ° ° ° d. 4 3 33. Write an equation that is parallel to . a. b. c. d. a. Alternate Interior Angles Converse b. Consecutive Interior Angles Converse c. Corresponding Angles Converse d. Alternate Exterior Angles Converse 31. Find the slope of the line passing through the points A(6, –5) and B(–5, –7). a. 1 12 b. 11 2 c. 12 d. 2 11 32. Find the slope of the line. 34. Write an equation that is perpendicular to . a. y = 2x – 3 b. c. d. y = –2x 35. Classify PQR. y 10 5 –10 –5 5 –5 –10 a. 2 15 b. 15 2 c. 3 4 37. Find the value of x: x a. none of these b. Isosceles c. Scalene d. Equilateral 36. A triangle has angle measures of 60°, 60°, and 60°. Choose the term that describes the triangle. a. Equiangular b. Right c. Obtuse d. Scalene a. 127° 38. Find the value of x. b. 35° c. 88° d. 145° a. 117 39. Find the value of x. b. 297 c. 66 d. 51 a. ° b. ° c. ° d. ° 40. The two triangle-shaped gardens are congruent. Find the missing side lengths and angle measures. a. a = 5 ft; b = 28°; c = 90°; d = 62°; e = 5 ft b. a = 5 ft; b = 28°; c = 62°; d = 90°; e = 5 ft c. a = 9.5 ft; b = 28°; c = 90°; d = 62°; e = 10.7 ft d. a = 5 ft; b = 28°; c = 90°; d = 62°; e = 10.7 ft 41. In the diagram, and . Find the value of x. a. b. a. b. c. d. 42. Describe the transformation you can use to move the solid figure onto the dashed figure. c. d. Explain how you know the triangles are congruent. Then write an equation and solve for x. a. reflection b. dilation c. translation d. rotation 43. Which is not an example of a rigid motion? 44. a. Side-Angle-Side; b. Side-Side-Side; c. Side-Angle-Side; d. Side-Side-Side; 45. What must be true in order for the SAS Congruence Postulate? by a. ASA Congruence Postulate b. AAS Congruence Theorem c. SSS Congruence Postulate d. SAS Congruence Postulate 48. What is the measure of each base angle of an isosceles triangle if its vertex angle measures 40 degrees and its 2 congruent sides measure 25 units? a. b. c. d. 46. . Name the theorem or postulate that justifies the congruence. a. b. c. d. 49. In 70° 140° 50° 40° , if and 39°, then . a. ASA b. AAS c. SAS d. HL 47. Which postulate or theorem can be used to determine the length of ? a. 102° b. 39° c. d. 141° 50. The change in position from the solid figure to the dotted figure is best described as a . d. 52. What is the translation image of (–3, –6) after the translation ? a. reflection b. transmission c. rotation d. translation 51. Which graph represents a reflection in the -axis? a. a. (–7, –9) b. (1, –9) c. (–7, –3) d. (1, –3) 53. In a triangle, a segment connecting the midpoints of two sides of the triangle is called a _____. a. shortcut b. midsegment c. centroid d. vertex 54. Solve for x given = and Assume B is the midpoint of midpoint of b. = . and D is the C B A c. a. D E 1 2 b. 4 c. 2 d. 1 4 55. If is the perpendicular bisector of KGF ______. , then a. KHF b. FKG c. d. KFH 56. Are the two polygons similar? (They are not drawn to scale, but assume all angles are 90°.) If not, explain why. c. congruent d. linear pairs 58. If two polygons are SIMILAR, then the corresponding sides must be _____. a. proportional b. congruent c. parallel d. similar 59. Given that solve for x and y. 2 8 6 5 25 30 41 a. b. c. d. 60. Which triangle is NOT similar to any of the others? a. 10 b. a. Yes b. No; c. c. not enough information to tell d. No; d. 57. If two polygons are SIMILAR, then the corresponding angles must be _____. a. complementary b. supplementary 61. Two ladders are leaning against a wall at the same angle as shown. How far up the wall does the shorter ladder reach? a. 16 ft b. 18 ft c. 22 ft 62. Shown below is an illustration of the ______. a. AA Similarity Postulate b. SAS Congruence Theorem c. SSS Similarity Theorem d. SAS Similarity Theorem 63. The postulate or theorem that can be used to prove that the two triangles are similar is _____. a. b. c. d. SAS Similarity Theorem ASA Congruence Theorem SSS Similarity Theorem AA Similarity Postulate 64. Given: . Find the length of . d. 36 ft a. 17 b. 19 c. 12 d. 15 65. The dashed triangle is the image of the solid triangle for a dilation with center at the origin. What is the scale factor? y a. 2 3 b. 3 2 c. 3 d. 1 3 10 –10 10 x –10 66. Find the length of the leg of this right triangle. Give an approximation to 3 decimal places. a. 12.329 b. 11.916 67. is a right triangle. AB = _____. c. 12.650 d. 27.019 b. :1 c. :1 d. 2:1 70. The tangent of is _____. a. b. c. d. 117 a. 68. If the side lengths of a triangle are 7, 6, and 9, the triangle _____. a. is an obtuse triangle b. b. is a right triangle c. is an acute triangle c. d. cannot be formed d. 69. In a 45°-45°-90° triangle, the ratio of the length of the hypotenuse to the length of a side is _____. a. 1:1 71. A photographer shines a camera light at a particular painting forming an angle of 40° with the camera platform. If the light is 58 feet from the wall where the painting hangs, how high above the platform is the painting? a. 1.19 ft 72. Write cos B. b. 48.67 ft c. 69.12 ft d. 0.84 ft a. about 39.1° b. about 7.01° c. about 50.9° d. about 129.9° 76. Solve for x to the nearest degree. a. b. c. d. 73. Use your calculator to find cos 23°. a. about 0.921 b. about 0.390 c. about 1.07 d. about 0.424 74. What is x to the nearest hundredth? (not drawn to scale) a. b. c. d. 75. Assume that is an acute angle and tan A = 1.230. The measure of is _____. a. 30 b. 63 c. 60 d. 27 77. For parallelogram PQLM below, if then ______ . 83°, a. b. 83° c. 97° d. 78. Consecutive angles in a parallelogram are always ________. a. congruent angles b. complementary angles c. supplementary angles d. vertical angles 79. Find the value of the variables in the parallelogram. a. x = 52°, y = 10.5°, z = 159° b. x = 21°, y = 55°, z = 104° c. x = 55°, y = 21°, z = 104° d. x = 10.5°, y = 52°, z = 159° 80. Which statement is true? a. All quadrilaterals are squares. b. All rectangles are squares. c. All parallelograms are quadrilaterals. d. All quadrilaterals are parallelograms. 81. For the trapezoid shown below, the measure of the midsegment is _______. a. b. c. d. What name best describes the quadrilateral? 82. a. b. c. d. . Short Answer 108. Find the value of x and y. 29 58 25 30 parallelogram rhombus kite rectangle Study Guide Final Exam Answer Section MULTIPLE CHOICE 1. ANS: TOP: MSC: 2. ANS: NAT: KEY: 3. ANS: TOP: KEY: NOT: 4. ANS: TOP: KEY: NOT: 5. ANS: LOC: TOP: MSC: 6. ANS: LOC: TOP: MSC: 7. ANS: NAT: KEY: 8. ANS: NAT: KEY: NOT: 9. ANS: NAT: LOC: TOP: MSC: 10. ANS: NAT: KEY: 11. ANS: NAT: KEY: NOT: 12. ANS: NAT: KEY: A PTS: 1 DIF: Level A REF: MLGE0084 Lesson 1.1 Identify Points, Lines, and Planes KEY: points | collinear DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MHGT0075 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 1.2 Use Segments and Congruence notation | segment length MSC: DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: PHGM0109 Lesson 1.2 Use Segments and Congruence segment length | segment addition postulate MSC: DOK 2 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: DBXM1001 Lesson 1.2 Use Segments and Congruence segment length | segment addition postulate MSC: DOK 2 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: DBTM0807 NCTM.PSSM.00.MTH.9-12.GEO.2.a Lesson 1.3 Use Midpoint and Distance Formulas KEY: distance formula | coordinate geometry DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: AKA20905 NCTM.PSSM.00.MTH.9-12.GEO.2.a Lesson 1.3 Use Midpoint and Distance Formulas KEY: midpoint formula DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MLP10245 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 1.4 Measure and Classify Angles angle | measure MSC: DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MHGM0014 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 1.4 Measure and Classify Angles angle measure | angle addition postulate MSC: DOK 2 978-0-547-31534-8 A PTS: 1 DIF: Level C REF: MLGE0216 NT.CCSS.MTH.10.9-12.G.CO.1 NCTM.PSSM.00.MTH.9-12.PRS.3 | NCTM.PSSM.00.MTH.9-12.REP.2 Lesson 1.4 Measure and Classify Angles KEY: angle addition postulate | angle measure DOK 3 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: XMOD0506 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 1.4 Measure and Classify Angles angle | name MSC: DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MLGE0245 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 1.4 Measure and Classify Angles solve | linear equation | angle bisector | angle measure MSC: DOK 2 978-0-547-31534-8 C PTS: 1 DIF: Level B REF: MGEO0044 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 1.5 Describe Angle Pair Relationships angle measure | complementary angles MSC: DOK 1 NOT: 13. ANS: LOC: TOP: KEY: MSC: 14. ANS: TOP: MSC: 15. ANS: TOP: MSC: 16. ANS: TOP: MSC: 17. ANS: LOC: TOP: MSC: 18. ANS: NAT: LOC: TOP: MSC: 19. ANS: NAT: KEY: 20. ANS: NAT: KEY: 21. ANS: TOP: MSC: 22. ANS: LOC: TOP: MSC: 23. ANS: NAT: KEY: 24. ANS: NAT: KEY: 25. ANS: NAT: KEY: 26. ANS: NAT: KEY: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MHGT0089 NCTM.PSSM.00.MTH.9-12.ALG.2.b Lesson 2.5 Reason Using Properties from Algebra property | substitution | multiplication | transitive | reflexive DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MLGE0175A Lesson 2.4 Use Postulates and Diagrams KEY: line | point | plane | postulate DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MLGE0175B Lesson 2.4 Use Postulates and Diagrams KEY: line | point | plane | postulate DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MLGE0175F Lesson 2.4 Use Postulates and Diagrams KEY: line | point | plane | postulate DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: MLGE0196 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 2.7 Prove Angle Pair Relationships KEY: line | vertical | angle | intersecting DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MLGE0199 NT.CCSS.MTH.10.9-12.A.REI.3 NCTM.PSSM.00.MTH.9-12.PRS.3 | NCTM.PSSM.00.MTH.9-12.REP.2 Lesson 2.7 Prove Angle Pair Relationships KEY: supplementary angles | vertical angles DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MHGM0029A NT.CCSS.MTH.10.9-12.G.CO.9 TOP: Lesson 2.7 Prove Angle Pair Relationships proof | deductive | postulate MSC: DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MHGM0029C NT.CCSS.MTH.10.9-12.G.CO.9 TOP: Lesson 2.7 Prove Angle Pair Relationships proof | deductive | postulate MSC: DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: MLGE0444 Lesson 2.7 Prove Angle Pair Relationships KEY: angle | supplementary | linear pair DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level B REF: MLGE0445 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 2.7 Prove Angle Pair Relationships KEY: vertical | angle | supplementary DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MHGT0133 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 3.1 Identify Pairs of Lines and Angles skew | coplanar MSC: DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level B REF: MHGT0135 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 3.1 Identify Pairs of Lines and Angles cube | skew MSC: DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MGEH0022 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 3.1 Identify Pairs of Lines and Angles angles | exterior | alternate MSC: DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MGEH0023 NT.CCSS.MTH.10.9-12.G.CO.1 TOP: Lesson 3.1 Identify Pairs of Lines and Angles angles | interior | consecutive MSC: DOK 1 NOT: 978-0-547-31534-8 27. ANS: TOP: MSC: 28. ANS: LOC: TOP: KEY: NOT: 29. ANS: LOC: TOP: MSC: 30. ANS: TOP: MSC: 31. ANS: TOP: MSC: 32. ANS: LOC: KEY: 33. ANS: NAT: TOP: MSC: 34. ANS: NAT: TOP: MSC: 35. ANS: LOC: TOP: KEY: NOT: 36. ANS: LOC: TOP: MSC: 37. ANS: TOP: MSC: 38. ANS: TOP: MSC: 39. ANS: TOP: MSC: 40. ANS: TOP: MSC: A PTS: 1 DIF: Level B REF: MLGE0205 Lesson 3.2 Use Parallel Lines and Transversals KEY: angles | parallel lines | transversal DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MIM20426 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 3.2 Use Parallel Lines and Transversals complementary | supplementary | alternate interior MSC: DOK 2 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MIM20665 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 3.2 Use Parallel Lines and Transversals KEY: angle | measure | alternate interior DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MGEH0029 Lesson 3.3 Prove Lines are Parallel KEY: converse | alternate exterior angles DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: DBIM0706 Lesson 3.4 Find and Use Slopes of Lines KEY: slope DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: ALS10383 NCTM.PSSM.00.MTH.9-12.ALG.1.c TOP: Lesson 3.4 Find and Use Slopes of Lines graph | slope MSC: DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MGEH0032 NT.CCSS.MTH.10.9-12.G.GPE.5 | NT.CCSS.MTH.10.9-12.A.CED.2 Lesson 3.5 Write and Graph Equations of Lines KEY: line | equation | parallel DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: HLGM0070 NT.CCSS.MTH.10.9-12.G.GPE.5 | NT.CCSS.MTH.10.9-12.A.CED.2 Lesson 3.5 Write and Graph Equations of Lines KEY: line | equation | perpendicular DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: MLGE0222 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 4.1 Apply Triangle Sum Properties triangle | classify | isosceles | equilateral | scalene MSC: DOK 1 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: HLGM0266 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 4.1 Apply Triangle Sum Properties KEY: angle | acute | triangle | measure DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MHGM0049 Lesson 4.1 Apply Triangle Sum Properties KEY: angle | theorem | exterior DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MHGM0050 Lesson 4.1 Apply Triangle Sum Properties KEY: angle | exterior | exterior angle DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MOT70177 Lesson 4.1 Apply Triangle Sum Properties KEY: angle | right | triangle | sum DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MHGM0045 Lesson 4.2 Apply Congruence and Triangles KEY: triangle | missing | congruent DOK 1 NOT: 978-0-547-31534-8 41. ANS: LOC: TOP: MSC: 42. ANS: TOP: MSC: 43. ANS: TOP: MSC: 44. ANS: TOP: MSC: 45. ANS: NAT: KEY: 46. ANS: NAT: KEY: NOT: 47. ANS: NAT: KEY: 48. ANS: TOP: MSC: 49. ANS: TOP: KEY: NOT: 50. ANS: NAT: TOP: KEY: NOT: 51. ANS: NAT: TOP: MSC: 52. ANS: NAT: TOP: MSC: 53. ANS: TOP: MSC: 54. ANS: TOP: MSC: B PTS: 1 DIF: Level B REF: MLGE0047 NCTM.PSSM.00.MTH.9-12.GEO.1.b Lesson 4.2 Apply Congruence and Triangles KEY: angle | triangle | measure | congruent DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A NAT: NT.CCSS.MTH.10.9-12.G.CO.6 Lesson 4.3 Relate Transformations and Congruence KEY: transformations | congruent DOK 1 B PTS: 1 DIF: Level A NAT: NT.CCSS.MTH.10.9-12.G.CO.2 Lesson 4.3 Relate Transformations and Congruence KEY: transformations | congruent DOK 1 B PTS: 1 DIF: Level B REF: MGR80076 Lesson 4.4 Prove Triangles Congruent by SSS KEY: SSS Congruence | triangle DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level B REF: HLGM0307 NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 4.5 Prove Triangles Congruent by SAS and HL triangle | congruent | SAS MSC: DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MHGM0080 NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 4.6 Prove Triangles Congruent by ASA and AAS triangle | congruence | ASA | HL | AAS | SAS MSC: DOK 1 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: HLGM0316 NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 4.7 Use Congruent Triangles triangle | length | segment | AAS MSC: DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: TASH0121 Lesson 4.8 Use Isosceles and Equilateral Triangles KEY: angle | triangle | isosceles DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: HLGM0295 Lesson 4.8 Use Isosceles and Equilateral Triangles angle | triangle | segment | isosceles | congruent MSC: DOK 2 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: TASH0070 NT.CCSS.MTH.10.9-12.G.CO.4 | NT.CCSS.MTH.10.9-12.G.CO.2 Lesson 4.9 Perform Congruence Transformations reflection | rotation | translation | transformation MSC: DOK 1 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: DD020284 NT.CCSS.MTH.10.9-12.G.CO.2 | NT.CCSS.MTH.10.9-12.G.CO.5 Lesson 4.9 Perform Congruence Transformations KEY: translations DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MLGM0093 NT.CCSS.MTH.10.9-12.G.CO.2 LOC: NCTM.PSSM.00.MTH.9-12.GEO.3.a Lesson 4.9 Perform Congruence Transformations KEY: evaluate | point | coordinates | translation DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: HLGM0388 Lesson 5.1 Midsegment Theorem and Coordinate Proof KEY: triangle | midpoint | segment DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: PHGM0015 Lesson 5.1 Midsegment Theorem and Coordinate Proof KEY: triangle | midsegment DOK 2 NOT: 978-0-547-31534-8 55. ANS: TOP: MSC: 56. ANS: NAT: TOP: MSC: 57. ANS: NAT: KEY: NOT: 58. ANS: NAT: KEY: NOT: 59. ANS: NAT: TOP: MSC: 60. ANS: NAT: TOP: MSC: 61. ANS: NAT: TOP: MSC: 62. ANS: NAT: KEY: 63. ANS: NAT: TOP: MSC: 64. ANS: NAT: KEY: NOT: 65. ANS: NAT: TOP: MSC: 66. ANS: NAT: KEY: NOT: 67. ANS: NAT: KEY: NOT: A PTS: 1 DIF: Level B REF: HLGM0343 Lesson 5.2 Use Perpendicular Bisectors KEY: angle | triangle | perpendicular | bisector DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level C REF: MLP20024 NT.CCSS.MTH.10.9-12.G.SRT.2 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b Lesson 6.1 Use Similar Polygons KEY: figure | similar | polygon DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: MLGE0144 NT.CCSS.MTH.10.9-12.G.SRT.2 TOP: Lesson 6.1 Use Similar Polygons angle | similar | polygon | correspond MSC: DOK 1 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MLGE0145 NT.CCSS.MTH.10.9-12.G.SRT.2 TOP: Lesson 6.1 Use Similar Polygons similar | polygon | side | correspond MSC: DOK 1 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MLA10071 NT.CCSS.MTH.10.9-12.G.SRT.5 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b Lesson 6.1 Use Similar Polygons KEY: solve | proportion | similar | triangle DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MLGE0169 NT.CCSS.MTH.10.9-12.G.SRT.2 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b Lesson 6.3 Prove Triangles Similar by AA KEY: similar | triangle DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MLGE0412 NT.CCSS.MTH.10.9-12.G.SRT.5 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b Lesson 6.3 Prove Triangles Similar by AA KEY: ratio | model | similar | triangle DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: HLGM0654 NT.CCSS.MTH.10.9-12.G.SRT.2 TOP: Lesson 6.4 Prove Triangles Similar by SSS and SAS triangle | SAS MSC: DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: HLGM0655 NT.CCSS.MTH.10.9-12.G.SRT.2 | NT.CCSS.MTH.10.9-12.G.SRT.3 Lesson 6.4 Prove Triangles Similar by SSS and SAS KEY: similar | triangle | AAA DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: PHGM1023 NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 6.5 Use Proportionality Theorems proportion | similar | triangle | parallel | side-splitter MSC: DOK 2 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MLGE0149 NT.CCSS.MTH.10.9-12.G.CO.2 | NT.CCSS.MTH.10.9-12.G.SRT.1.b Lesson 6.6 Perform Similarity Transformations KEY: dilation DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MLGE0378 NT.CCSS.MTH.10.8.8.G.7 TOP: Lesson 7.1 Apply the Pythagorean Theorem Pythagorean Theorem | right triangles MSC: DOK 1 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: HLGM0696 NT.CCSS.MTH.10.8.8.G.7 TOP: Lesson 7.1 Apply the Pythagorean Theorem right triangles | Pythagorean Theorem MSC: DOK 1 978-0-547-31534-8 68. ANS: LOC: TOP: KEY: 69. ANS: LOC: KEY: NOT: 70. ANS: TOP: MSC: 71. ANS: NAT: LOC: TOP: MSC: 72. ANS: TOP: KEY: NOT: 73. ANS: LOC: TOP: MSC: 74. ANS: LOC: TOP: MSC: 75. ANS: LOC: KEY: 76. ANS: LOC: KEY: 77. ANS: LOC: TOP: MSC: 78. ANS: LOC: TOP: KEY: NOT: 79. ANS: LOC: TOP: MSC: 80. ANS: LOC: TOP: C PTS: 1 DIF: Level B REF: HLGM0713 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 7.2 Use the Converse of the Pythagorean Theorem classifying triangles MSC: DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: HLGM0728 NCTM.PSSM.00.MTH.9-12.GEO.1.a TOP: Lesson 7.4 Special Right Triangles special right triangles | 45-45-90 triangle MSC: DOK 1 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: HLGM0738 Lesson 7.5 Apply the Tangent Ratio KEY: tangent ratio DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: PMG80819 NT.CCSS.MTH.10.9-12.G.SRT.8 NCTM.PSSM.00.MTH.9-12.GEO.1.d | NCTM.PSSM.00.MTH.9-12.PRS.2 Lesson 7.5 Apply the Tangent Ratio KEY: word | tangent ratio DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: MHGM0136 Lesson 7.6 Apply the Sine and Cosine Ratios sine and cosine ratios | trigonometric ratios MSC: DOK 1 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: HLGM0741 NCTM.PSSM.00.MTH.9-12.NOP.3.a Lesson 7.6 Apply the Sine and Cosine Ratios KEY: sine and cosine ratios | calculator DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MLGE0381 NCTM.PSSM.00.MTH.9-12.GEO.1.d Lesson 7.6 Apply the Sine and Cosine Ratios KEY: sine and cosine ratios DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: HLGM0743 NCTM.PSSM.00.MTH.9-12.GEO.1.d TOP: Lesson 7.7 Solve Right Triangles inverse tangent MSC: DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: PHGM1106 NCTM.PSSM.00.MTH.9-12.GEO.1.d TOP: Lesson 7.7 Solve Right Triangles sine and cosine ratios MSC: DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: HLGM0457 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 8.2 Use Properties of Parallelograms KEY: angle measure | parallelogram DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: MLGE0285 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 8.2 Use Properties of Parallelograms parallelogram | consecutive interior angles | property MSC: DOK 2 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MHN90085 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 8.2 Use Properties of Parallelograms KEY: angle measure | parallelogram | diagonals DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: TASH0019 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 8.4 Properties of Rhombuses, Rectangles, and Squares 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. KEY: NOT: ANS: LOC: TOP: MSC: ANS: LOC: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: NOT: ANS: LOC: KEY: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: TOP: MSC: ANS: NAT: KEY: property | quadrilateral | geometric figure MSC: DOK 1 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MHST0016 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 8.5 Use Properties of Trapezoids and Kites KEY: trapezoid | midsegment DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MIM10065 NCTM.PSSM.00.MTH.9-12.GEO.1.a Lesson 8.6 Identify Special Quadrilaterals KEY: quadrilateral | identify DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: POW70028 Lesson 10.1 Use Properties of Tangents KEY: circle | chord DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: MLGE0166 Lesson 10.1 Use Properties of Tangents KEY: circle | chord | endpoint | segment DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: HLGM0829 Lesson 10.1 Use Properties of Tangents KEY: circle | diameter | radius DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: HLGM0950 Lesson 10.1 Use Properties of Tangents KEY: circle | tangent | intersect DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MLGE0100 Lesson 10.2 Find Arc Measures KEY: circle | angle | triangle | arc length DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: HLGM0970 Lesson 10.2 Find Arc Measures KEY: arc | minor MSC: DOK 1 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: MC100096 NCTM.PSSM.00.MTH.9-12.PRS.2 TOP: Lesson 10.2 Find Arc Measures word | angle | real-life | measure MSC: DOK 1 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: HLGM0980 Lesson 10.3 Apply Properties of Chords KEY: diameter DOK 1 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: MLGE0460 Lesson 10.4 Use Inscribed Angles and Polygons KEY: angle | measure | arc DOK 1 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: DJAM1012 Lesson 10.5 Apply Other Angle Relationships in Circles KEY: angle | arc | degrees DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MLGE0108 Lesson 10.5 Apply Other Angle Relationships in Circles KEY: circle | chord | angle DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: XMOD0510 Lesson 10.6 Find Segment Lengths in Circles KEY: circle | chord | length DOK 1 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: DBIM0719 NT.CCSS.MTH.10.9-12.G.GPE.1 TOP: Lesson 10.7 Write and Graph Equations of Circles equation | identify | circle | radius | center MSC: DOK 1 NOT: 96. ANS: TOP: MSC: 97. ANS: TOP: MSC: 98. ANS: LOC: TOP: MSC: 99. ANS: LOC: KEY: 100. ANS: LOC: KEY: 101. ANS: LOC: KEY: MSC: 102. ANS: LOC: TOP: MSC: 103. ANS: NAT: TOP: MSC: 104. ANS: NAT: TOP: MSC: 105. ANS: NAT: TOP: MSC: 106. ANS: LOC: TOP: MSC: 107. ANS: NAT: TOP: MSC: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MLGE0266 Lesson 11.1 Circumference and Arc Length KEY: circle | circumference DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MGEO0025 Lesson 11.1 Circumference and Arc Length KEY: circle | radius | arc length DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level A REF: MLA20277 NCTM.PSSM.00.MTH.9-12.MEA.2.b Lesson 11.1 Circumference and Arc Length KEY: circle | area | sector DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level A REF: MGEO0031 NCTM.PSSM.00.MTH.9-12.MEA.2.b TOP: Lesson 11.2 Areas of Circles and Sectors circle | area MSC: DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: MGEO0032 NCTM.PSSM.00.MTH.9-12.MEA.2.b TOP: Lesson 11.2 Areas of Circles and Sectors square | circle | area MSC: DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level B REF: MLGE0275 NCTM.PSSM.00.MTH.9-12.MEA.2.b TOP: Lesson 11.2 Areas of Circles and Sectors circle | chord | area | sector | triangle | Pythagorean Theorem DOK 2 NOT: 978-0-547-31534-8 B PTS: 1 DIF: Level B REF: TASH0033 NCTM.PSSM.00.MTH.9-12.MEA.2.b | NCTM.PSSM.00.MTH.9-12.PRS.2 Lesson 11.6 Volume of Prisms and Cylinders KEY: volume | rectangular | solid | prism | box DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level B REF: HLGM1172 NT.CCSS.MTH.10.9-12.G.GMD.3 LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b Lesson 11.6 Volume of Prisms and Cylinders KEY: right | volume | cylinder | circular DOK 2 NOT: 978-0-547-31534-8 A PTS: 1 DIF: Level B REF: MHGM0097 NT.CCSS.MTH.10.9-12.G.GMD.3 LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b Lesson 11.7 Volumes of Pyramids and Cones KEY: square | volume | pyramid DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level A REF: MLGE0320 NT.CCSS.MTH.10.9-12.G.GMD.3 LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b Lesson 11.7 Volumes of Pyramids and Cones KEY: volume | cone DOK 2 NOT: 978-0-547-31534-8 D PTS: 1 DIF: Level A REF: HLGM1195 NCTM.PSSM.00.MTH.9-12.MEA.2.b Lesson 11.8 Surface Area and Volume of Spheres KEY: area | surface | sphere DOK 2 NOT: 978-0-547-31534-8 C PTS: 1 DIF: Level B REF: MLGE0324 NT.CCSS.MTH.10.9-12.G.GMD.3 LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b Lesson 11.8 Surface Area and Volume of Spheres KEY: diameter | volume | sphere DOK 2 NOT: 978-0-547-31534-8 SHORT ANSWER 108. ANS: PTS: 1 DIF: Level A REF: AGEO0705 KEY: special right triangles | 30-60-90 triangle NOT: 978-0-547-31534-8 TOP: Lesson 7.4 Special Right Triangles MSC: DOK 1
© Copyright 2026 Paperzz