Study Guide Final Exam Multiple Choice Identify the choice that best

Study Guide Final Exam
Multiple Choice
Identify the choice that best completes the statement or answers the question.
1. Name three points that are collinear.
c. points S, Q, and R
d. points T, S, and R
2. The notation for the length of the segment between
P and Q is _______.
a.
b.
c.
d. PQ
a. points T, Q, and R
b. points T, Q, and S
3. If RS = 44 and QS = 68, find QR.
a. 14
b. 44
4. If AB = 15 and AC = 23, find the length of
c. 112
.
a. 1
b. 15
c. 8
d. 38
5. Find the distance between the points (1, 4) and (–
2, –1).
a.
10
b. 10
c. 34
d.
34
6. Find the midpoint of the segment with endpoints
(9, 8) and (3, 5).
a.
3
( 3, )
2
b. (12, 13)
c.
13
( 6, )
2
d. 24
d. (1, –2)
7. Which angle measures approximately 72°?
a.
b.
c.
d.
8. If
measure of
° and
?
°, then what is the
a. 45°
b. 44°
c. 52°
d. 47°
9. mJHI = (
)° and mGHI = (
mJHG = 65°.
Find mJHI and mGHI.
a. mJHI = 19° and mGHI = 46°
b. mJHI = 46° and mGHI = 19°
c. mJHI = 13° and mGHI = 52°
d. mJHI = 52° and mGHI = 13°
10. Which does not name the angle below?
a. DCE
b. CDE
c. ECD
d. C
11. In the figure (not drawn to scale),
bisects
°, and
°. Solve for x and find
)° and
a.
b.
c.
d.
2, 38°
2, 7°
7, 207°
7, 120°
Complete the conditional statement to make a
true statement.
12. If
and
are complementary and
°,
then
a.
°
b.
°
c.
°
d.
°
13. If PQ = 3 and PQ + RS = 5, then 3 + RS = 5 is an
example of the __________.
a. Substitution Property of Equality
b. Multiplication Property of Equality
c. Transitive Property of Equality
d. Reflexive Property of Equality
Choose the phrase that completes the following
statement as stated by the Point, Line, and Plane
Postulates:
14. One plane ____ passes through three noncollinear
points.
a. always
b. never
c. sometimes
d. Point, Line, and Plane Postulates do not address
this topic directly.
15. A line ____contains at least two points.
a. always
b. never
c. sometimes
d. Point, Line, and Plane Postulates do not address
this topic directly.
16. If two distinct lines intersect, their intersection is
____ one point.
a. always
b. never
c. sometimes
d. Point, Line, and Plane Postulates do not address
this topic directly.
17. In the figure shown,
. Which of the
following statements is false?
d. Linear Pair Postulate
20. Give the reason for the last statement in the proof.
a.
b.
c.
d.
21.
A
is
a.
b.
c.
d.
D
E
B
C
a.
b.
c.
d.
18. Solve for x.
Vertical Angles Congruence Theorem
Congruent Complements Theorem
Congruent Supplements Theorem
Linear Pair Postulate
form a linear pair. If
, what
22.
are supplementary angles.
are vertical angles. If
what is
a.
b.
c.
d.
23. Two lines that are not coplanar and do not intersect
are called _____________.
a. Parallel
b. oblique
c. perpendicular
d. skew lines
Use the figure below.
a. 3
b. 6
c. 1
d. 2
19. Give the reason for the last statement in the proof.
a. Congruent Supplements Theorem
b. Congruent Complements Theorem
c. Vertical Angles Congruence Theorem
24. For the cube shown,
___________.
a. parallel lines
b. oblique lines
c. skew lines
d. perpendicular lines
and
are
25. In the figure,
and
are _________.
a. alternate exterior angles
b. alternate interior angles
26. In the figure,
are __________.
c. consecutive interior angles
d. corresponding angles
d.
°
28. Use the figure to find the measure of
a.
b.
c.
d.
a.
b.
c.
d.
alternate exterior angles
consecutive interior angles
corresponding angles
alternate interior angles
27. Find m1 in the figure below.
parallel.
°
°
°
°
College Entrance Exam:
29. In the figure below, if l and k are parallel lines,
what is the value of x + y?
and
are
a.
°
b.
°
c.
°
d.
°
30. Refer to the figure. Which theorem guarantees l and
m are parallel?
a.
b.
c.
°
°
°
d.
4
3
33. Write an equation that is parallel to
.
a.
b.
c.
d.
a. Alternate Interior Angles Converse
b. Consecutive Interior Angles Converse
c. Corresponding Angles Converse
d. Alternate Exterior Angles Converse
31. Find the slope of the line passing through the points
A(6, –5) and B(–5, –7).
a.
1

12
b. 11
2
c. 12
d. 2
11
32. Find the slope of the line.
34. Write an equation that is perpendicular to
.
a. y = 2x – 3
b.
c.
d. y = –2x
35. Classify PQR.
y
10
5
–10
–5
5
–5
–10
a.
2
15
b. 15
2
c. 3
4
37. Find the value of x:
x
a. none of these
b. Isosceles
c. Scalene
d. Equilateral
36. A triangle has angle measures of 60°, 60°, and 60°.
Choose the term that describes the triangle.
a. Equiangular
b. Right
c. Obtuse
d. Scalene
a. 127°
38. Find the value of x.
b. 35°
c. 88°
d. 145°
a. 117
39. Find the value of x.
b. 297
c. 66
d. 51
a.
°
b.
°
c.
°
d.
°
40. The two triangle-shaped gardens are congruent. Find the missing side lengths and angle measures.
a. a = 5 ft; b = 28°; c = 90°; d = 62°; e = 5 ft
b. a = 5 ft; b = 28°; c = 62°; d = 90°; e = 5 ft
c. a = 9.5 ft; b = 28°; c = 90°; d = 62°; e = 10.7 ft
d. a = 5 ft; b = 28°; c = 90°; d = 62°; e = 10.7 ft
41. In the diagram,
and
. Find the
value of x.
a.
b.
a.
b.
c.
d.
42. Describe the transformation you can use to move
the solid figure onto the dashed figure.
c.
d.
Explain how you know the triangles are
congruent. Then write an equation and solve for
x.
a. reflection
b. dilation
c. translation
d. rotation
43. Which is not an example of a rigid motion?
44.
a. Side-Angle-Side;
b. Side-Side-Side;
c. Side-Angle-Side;
d. Side-Side-Side;
45. What must be true in order for
the SAS Congruence Postulate?
by
a. ASA Congruence Postulate
b. AAS Congruence Theorem
c. SSS Congruence Postulate
d. SAS Congruence Postulate
48. What is the measure of each base angle of an
isosceles triangle if its vertex angle measures 40
degrees and its 2 congruent sides measure 25 units?
a.
b.
c.
d.
46.
. Name the theorem or postulate
that justifies the congruence.
a.
b.
c.
d.
49. In
70°
140°
50°
40°
, if
and
39°, then
.
a. ASA
b. AAS
c. SAS
d. HL
47. Which postulate or theorem can be used to
determine the length of
?
a. 102°
b. 39°
c.
d. 141°
50. The change in position from the solid figure to the
dotted figure is best described as a
.
d.
52. What is the translation image of (–3, –6) after the
translation
?
a. reflection
b. transmission
c. rotation
d. translation
51. Which graph represents a reflection in the -axis?
a.
a. (–7, –9)
b. (1, –9)
c. (–7, –3)
d. (1, –3)
53. In a triangle, a segment connecting the midpoints of
two sides of the triangle is called a _____.
a. shortcut
b. midsegment
c. centroid
d. vertex
54. Solve for x given
=
and
Assume B is the midpoint of
midpoint of
b.
=
.
and D is the
C
B
A
c.
a.

D
E
1
2
b. 4
c. 2
d.
1

4
55. If
is the perpendicular bisector of
KGF  ______.
, then
a. KHF
b. FKG
c.
d. KFH
56. Are the two polygons similar? (They are not drawn
to scale, but assume all angles are 90°.) If not,
explain why.
c. congruent
d. linear pairs
58. If two polygons are SIMILAR, then the
corresponding sides must be _____.
a. proportional
b. congruent
c. parallel
d. similar
59. Given that
solve for x and y.
2
8
6
5
25
30
41
a.
b.
c.
d.
60. Which triangle is NOT similar to any of the others?
a.
10
b.
a. Yes
b.
No;
c.
c. not enough information to tell
d.
No;
d.
57. If two polygons are SIMILAR, then the
corresponding angles must be _____.
a. complementary
b. supplementary
61. Two ladders are leaning against a wall at the same angle as shown.
How far up the wall does the shorter ladder reach?
a. 16 ft
b. 18 ft
c. 22 ft
62. Shown below is an illustration of the ______.
a. AA Similarity Postulate
b. SAS Congruence Theorem
c. SSS Similarity Theorem
d. SAS Similarity Theorem
63. The postulate or theorem that can be used to prove
that the two triangles are similar is _____.
a.
b.
c.
d.
SAS Similarity Theorem
ASA Congruence Theorem
SSS Similarity Theorem
AA Similarity Postulate
64. Given:
. Find the length of
.
d. 36 ft
a. 17
b. 19
c. 12
d. 15
65. The dashed triangle is the image of the solid
triangle for a dilation with center at the origin.
What is the scale factor?
y
a.
2
3
b. 3
2
c. 3
d. 1
3
10
–10
10
x
–10
66. Find the length of the leg of this right triangle. Give an approximation to 3 decimal places.
a. 12.329
b. 11.916
67.
is a right triangle. AB = _____.
c. 12.650
d. 27.019
b.
:1
c.
:1
d. 2:1
70. The tangent of
is _____.
a.
b.
c.
d. 117
a.
68. If the side lengths of a triangle are 7, 6, and 9, the
triangle _____.
a. is an obtuse triangle
b.
b. is a right triangle
c. is an acute triangle
c.
d. cannot be formed
d.
69. In a 45°-45°-90° triangle, the ratio of the length of
the hypotenuse to the length of a side is _____.
a. 1:1
71. A photographer shines a camera light at a particular painting forming an angle of 40° with the camera platform. If
the light is 58 feet from the wall where the painting hangs, how high above the platform is the painting?
a. 1.19 ft
72. Write cos B.
b. 48.67 ft
c. 69.12 ft
d. 0.84 ft
a. about 39.1°
b. about 7.01°
c. about 50.9°
d. about 129.9°
76. Solve for x to the nearest degree.
a.
b.
c.
d.
73. Use your calculator to find cos 23°.
a. about 0.921
b. about 0.390
c. about 1.07
d. about 0.424
74. What is x to the nearest hundredth? (not drawn to
scale)
a.
b.
c.
d.
75. Assume that
is an acute angle and tan A =
1.230. The measure of
is _____.
a. 30
b. 63
c. 60
d. 27
77. For parallelogram PQLM below, if
then
______ .
83°,
a.
b. 83°
c. 97°
d.
78. Consecutive angles in a parallelogram are always
________.
a. congruent angles
b. complementary angles
c. supplementary angles
d. vertical angles
79. Find the value of the variables in the parallelogram.
a. x = 52°, y = 10.5°, z = 159°
b. x = 21°, y = 55°, z = 104°
c. x = 55°, y = 21°, z = 104°
d. x = 10.5°, y = 52°, z = 159°
80. Which statement is true?
a. All quadrilaterals are squares.
b. All rectangles are squares.
c. All parallelograms are quadrilaterals.
d. All quadrilaterals are parallelograms.
81. For the trapezoid shown below, the measure of the
midsegment is _______.
a.
b.
c.
d.
What name best describes the quadrilateral?
82.
a.
b.
c.
d.
.
Short Answer
108. Find the value of x and y.
29
58
25
30
parallelogram
rhombus
kite
rectangle
Study Guide Final Exam
Answer Section
MULTIPLE CHOICE
1. ANS:
TOP:
MSC:
2. ANS:
NAT:
KEY:
3. ANS:
TOP:
KEY:
NOT:
4. ANS:
TOP:
KEY:
NOT:
5. ANS:
LOC:
TOP:
MSC:
6. ANS:
LOC:
TOP:
MSC:
7. ANS:
NAT:
KEY:
8. ANS:
NAT:
KEY:
NOT:
9. ANS:
NAT:
LOC:
TOP:
MSC:
10. ANS:
NAT:
KEY:
11. ANS:
NAT:
KEY:
NOT:
12. ANS:
NAT:
KEY:
A
PTS: 1
DIF: Level A
REF: MLGE0084
Lesson 1.1 Identify Points, Lines, and Planes
KEY: points | collinear
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MHGT0075
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 1.2 Use Segments and Congruence
notation | segment length
MSC: DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: PHGM0109
Lesson 1.2 Use Segments and Congruence
segment length | segment addition postulate
MSC: DOK 2
978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: DBXM1001
Lesson 1.2 Use Segments and Congruence
segment length | segment addition postulate
MSC: DOK 2
978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: DBTM0807
NCTM.PSSM.00.MTH.9-12.GEO.2.a
Lesson 1.3 Use Midpoint and Distance Formulas
KEY: distance formula | coordinate geometry
DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: AKA20905
NCTM.PSSM.00.MTH.9-12.GEO.2.a
Lesson 1.3 Use Midpoint and Distance Formulas
KEY: midpoint formula
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MLP10245
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 1.4 Measure and Classify Angles
angle | measure
MSC: DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MHGM0014
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 1.4 Measure and Classify Angles
angle measure | angle addition postulate
MSC: DOK 2
978-0-547-31534-8
A
PTS: 1
DIF: Level C
REF: MLGE0216
NT.CCSS.MTH.10.9-12.G.CO.1
NCTM.PSSM.00.MTH.9-12.PRS.3 | NCTM.PSSM.00.MTH.9-12.REP.2
Lesson 1.4 Measure and Classify Angles
KEY: angle addition postulate | angle measure
DOK 3
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: XMOD0506
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 1.4 Measure and Classify Angles
angle | name MSC: DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MLGE0245
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 1.4 Measure and Classify Angles
solve | linear equation | angle bisector | angle measure
MSC: DOK 2
978-0-547-31534-8
C
PTS: 1
DIF: Level B
REF: MGEO0044
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 1.5 Describe Angle Pair Relationships
angle measure | complementary angles
MSC: DOK 1
NOT:
13. ANS:
LOC:
TOP:
KEY:
MSC:
14. ANS:
TOP:
MSC:
15. ANS:
TOP:
MSC:
16. ANS:
TOP:
MSC:
17. ANS:
LOC:
TOP:
MSC:
18. ANS:
NAT:
LOC:
TOP:
MSC:
19. ANS:
NAT:
KEY:
20. ANS:
NAT:
KEY:
21. ANS:
TOP:
MSC:
22. ANS:
LOC:
TOP:
MSC:
23. ANS:
NAT:
KEY:
24. ANS:
NAT:
KEY:
25. ANS:
NAT:
KEY:
26. ANS:
NAT:
KEY:
978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MHGT0089
NCTM.PSSM.00.MTH.9-12.ALG.2.b
Lesson 2.5 Reason Using Properties from Algebra
property | substitution | multiplication | transitive | reflexive
DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MLGE0175A
Lesson 2.4 Use Postulates and Diagrams
KEY: line | point | plane | postulate
DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MLGE0175B
Lesson 2.4 Use Postulates and Diagrams
KEY: line | point | plane | postulate
DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MLGE0175F
Lesson 2.4 Use Postulates and Diagrams
KEY: line | point | plane | postulate
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: MLGE0196
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 2.7 Prove Angle Pair Relationships
KEY: line | vertical | angle | intersecting
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MLGE0199
NT.CCSS.MTH.10.9-12.A.REI.3
NCTM.PSSM.00.MTH.9-12.PRS.3 | NCTM.PSSM.00.MTH.9-12.REP.2
Lesson 2.7 Prove Angle Pair Relationships
KEY: supplementary angles | vertical angles
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MHGM0029A
NT.CCSS.MTH.10.9-12.G.CO.9
TOP: Lesson 2.7 Prove Angle Pair Relationships
proof | deductive | postulate
MSC: DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MHGM0029C
NT.CCSS.MTH.10.9-12.G.CO.9
TOP: Lesson 2.7 Prove Angle Pair Relationships
proof | deductive | postulate
MSC: DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: MLGE0444
Lesson 2.7 Prove Angle Pair Relationships
KEY: angle | supplementary | linear pair
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level B
REF: MLGE0445
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 2.7 Prove Angle Pair Relationships
KEY: vertical | angle | supplementary
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MHGT0133
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 3.1 Identify Pairs of Lines and Angles
skew | coplanar
MSC: DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level B
REF: MHGT0135
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 3.1 Identify Pairs of Lines and Angles
cube | skew MSC: DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MGEH0022
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 3.1 Identify Pairs of Lines and Angles
angles | exterior | alternate
MSC: DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MGEH0023
NT.CCSS.MTH.10.9-12.G.CO.1
TOP: Lesson 3.1 Identify Pairs of Lines and Angles
angles | interior | consecutive
MSC: DOK 1
NOT: 978-0-547-31534-8
27. ANS:
TOP:
MSC:
28. ANS:
LOC:
TOP:
KEY:
NOT:
29. ANS:
LOC:
TOP:
MSC:
30. ANS:
TOP:
MSC:
31. ANS:
TOP:
MSC:
32. ANS:
LOC:
KEY:
33. ANS:
NAT:
TOP:
MSC:
34. ANS:
NAT:
TOP:
MSC:
35. ANS:
LOC:
TOP:
KEY:
NOT:
36. ANS:
LOC:
TOP:
MSC:
37. ANS:
TOP:
MSC:
38. ANS:
TOP:
MSC:
39. ANS:
TOP:
MSC:
40. ANS:
TOP:
MSC:
A
PTS: 1
DIF: Level B
REF: MLGE0205
Lesson 3.2 Use Parallel Lines and Transversals
KEY: angles | parallel lines | transversal
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MIM20426
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 3.2 Use Parallel Lines and Transversals
complementary | supplementary | alternate interior
MSC: DOK 2
978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MIM20665
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 3.2 Use Parallel Lines and Transversals
KEY: angle | measure | alternate interior
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MGEH0029
Lesson 3.3 Prove Lines are Parallel
KEY: converse | alternate exterior angles
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: DBIM0706
Lesson 3.4 Find and Use Slopes of Lines
KEY: slope
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: ALS10383
NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP: Lesson 3.4 Find and Use Slopes of Lines
graph | slope MSC: DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MGEH0032
NT.CCSS.MTH.10.9-12.G.GPE.5 | NT.CCSS.MTH.10.9-12.A.CED.2
Lesson 3.5 Write and Graph Equations of Lines
KEY: line | equation | parallel
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: HLGM0070
NT.CCSS.MTH.10.9-12.G.GPE.5 | NT.CCSS.MTH.10.9-12.A.CED.2
Lesson 3.5 Write and Graph Equations of Lines
KEY: line | equation | perpendicular
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: MLGE0222
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 4.1 Apply Triangle Sum Properties
triangle | classify | isosceles | equilateral | scalene
MSC: DOK 1
978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: HLGM0266
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 4.1 Apply Triangle Sum Properties
KEY: angle | acute | triangle | measure
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MHGM0049
Lesson 4.1 Apply Triangle Sum Properties
KEY: angle | theorem | exterior
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MHGM0050
Lesson 4.1 Apply Triangle Sum Properties
KEY: angle | exterior | exterior angle
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MOT70177
Lesson 4.1 Apply Triangle Sum Properties
KEY: angle | right | triangle | sum
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MHGM0045
Lesson 4.2 Apply Congruence and Triangles
KEY: triangle | missing | congruent
DOK 1
NOT: 978-0-547-31534-8
41. ANS:
LOC:
TOP:
MSC:
42. ANS:
TOP:
MSC:
43. ANS:
TOP:
MSC:
44. ANS:
TOP:
MSC:
45. ANS:
NAT:
KEY:
46. ANS:
NAT:
KEY:
NOT:
47. ANS:
NAT:
KEY:
48. ANS:
TOP:
MSC:
49. ANS:
TOP:
KEY:
NOT:
50. ANS:
NAT:
TOP:
KEY:
NOT:
51. ANS:
NAT:
TOP:
MSC:
52. ANS:
NAT:
TOP:
MSC:
53. ANS:
TOP:
MSC:
54. ANS:
TOP:
MSC:
B
PTS: 1
DIF: Level B
REF: MLGE0047
NCTM.PSSM.00.MTH.9-12.GEO.1.b
Lesson 4.2 Apply Congruence and Triangles
KEY: angle | triangle | measure | congruent
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
NAT: NT.CCSS.MTH.10.9-12.G.CO.6
Lesson 4.3 Relate Transformations and Congruence
KEY: transformations | congruent
DOK 1
B
PTS: 1
DIF: Level A
NAT: NT.CCSS.MTH.10.9-12.G.CO.2
Lesson 4.3 Relate Transformations and Congruence
KEY: transformations | congruent
DOK 1
B
PTS: 1
DIF: Level B
REF: MGR80076
Lesson 4.4 Prove Triangles Congruent by SSS
KEY: SSS Congruence | triangle
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level B
REF: HLGM0307
NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 4.5 Prove Triangles Congruent by SAS and HL
triangle | congruent | SAS
MSC: DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MHGM0080
NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 4.6 Prove Triangles Congruent by ASA and AAS
triangle | congruence | ASA | HL | AAS | SAS
MSC: DOK 1
978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: HLGM0316
NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 4.7 Use Congruent Triangles
triangle | length | segment | AAS
MSC: DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: TASH0121
Lesson 4.8 Use Isosceles and Equilateral Triangles
KEY: angle | triangle | isosceles
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: HLGM0295
Lesson 4.8 Use Isosceles and Equilateral Triangles
angle | triangle | segment | isosceles | congruent
MSC: DOK 2
978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: TASH0070
NT.CCSS.MTH.10.9-12.G.CO.4 | NT.CCSS.MTH.10.9-12.G.CO.2
Lesson 4.9 Perform Congruence Transformations
reflection | rotation | translation | transformation
MSC: DOK 1
978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: DD020284
NT.CCSS.MTH.10.9-12.G.CO.2 | NT.CCSS.MTH.10.9-12.G.CO.5
Lesson 4.9 Perform Congruence Transformations
KEY: translations
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MLGM0093
NT.CCSS.MTH.10.9-12.G.CO.2
LOC: NCTM.PSSM.00.MTH.9-12.GEO.3.a
Lesson 4.9 Perform Congruence Transformations
KEY: evaluate | point | coordinates | translation
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: HLGM0388
Lesson 5.1 Midsegment Theorem and Coordinate Proof
KEY: triangle | midpoint | segment
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: PHGM0015
Lesson 5.1 Midsegment Theorem and Coordinate Proof
KEY: triangle | midsegment
DOK 2
NOT: 978-0-547-31534-8
55. ANS:
TOP:
MSC:
56. ANS:
NAT:
TOP:
MSC:
57. ANS:
NAT:
KEY:
NOT:
58. ANS:
NAT:
KEY:
NOT:
59. ANS:
NAT:
TOP:
MSC:
60. ANS:
NAT:
TOP:
MSC:
61. ANS:
NAT:
TOP:
MSC:
62. ANS:
NAT:
KEY:
63. ANS:
NAT:
TOP:
MSC:
64. ANS:
NAT:
KEY:
NOT:
65. ANS:
NAT:
TOP:
MSC:
66. ANS:
NAT:
KEY:
NOT:
67. ANS:
NAT:
KEY:
NOT:
A
PTS: 1
DIF: Level B
REF: HLGM0343
Lesson 5.2 Use Perpendicular Bisectors
KEY: angle | triangle | perpendicular | bisector
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level C
REF: MLP20024
NT.CCSS.MTH.10.9-12.G.SRT.2 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b
Lesson 6.1 Use Similar Polygons
KEY: figure | similar | polygon
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: MLGE0144
NT.CCSS.MTH.10.9-12.G.SRT.2 TOP: Lesson 6.1 Use Similar Polygons
angle | similar | polygon | correspond
MSC: DOK 1
978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MLGE0145
NT.CCSS.MTH.10.9-12.G.SRT.2 TOP: Lesson 6.1 Use Similar Polygons
similar | polygon | side | correspond
MSC: DOK 1
978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MLA10071
NT.CCSS.MTH.10.9-12.G.SRT.5 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b
Lesson 6.1 Use Similar Polygons
KEY: solve | proportion | similar | triangle
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MLGE0169
NT.CCSS.MTH.10.9-12.G.SRT.2 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b
Lesson 6.3 Prove Triangles Similar by AA
KEY: similar | triangle
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MLGE0412
NT.CCSS.MTH.10.9-12.G.SRT.5 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b
Lesson 6.3 Prove Triangles Similar by AA
KEY: ratio | model | similar | triangle
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: HLGM0654
NT.CCSS.MTH.10.9-12.G.SRT.2 TOP: Lesson 6.4 Prove Triangles Similar by SSS and SAS
triangle | SAS
MSC: DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: HLGM0655
NT.CCSS.MTH.10.9-12.G.SRT.2 | NT.CCSS.MTH.10.9-12.G.SRT.3
Lesson 6.4 Prove Triangles Similar by SSS and SAS
KEY: similar | triangle | AAA
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: PHGM1023
NT.CCSS.MTH.10.9-12.G.SRT.5 TOP: Lesson 6.5 Use Proportionality Theorems
proportion | similar | triangle | parallel | side-splitter
MSC: DOK 2
978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MLGE0149
NT.CCSS.MTH.10.9-12.G.CO.2 | NT.CCSS.MTH.10.9-12.G.SRT.1.b
Lesson 6.6 Perform Similarity Transformations
KEY: dilation
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MLGE0378
NT.CCSS.MTH.10.8.8.G.7
TOP: Lesson 7.1 Apply the Pythagorean Theorem
Pythagorean Theorem | right triangles
MSC: DOK 1
978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: HLGM0696
NT.CCSS.MTH.10.8.8.G.7
TOP: Lesson 7.1 Apply the Pythagorean Theorem
right triangles | Pythagorean Theorem
MSC: DOK 1
978-0-547-31534-8
68. ANS:
LOC:
TOP:
KEY:
69. ANS:
LOC:
KEY:
NOT:
70. ANS:
TOP:
MSC:
71. ANS:
NAT:
LOC:
TOP:
MSC:
72. ANS:
TOP:
KEY:
NOT:
73. ANS:
LOC:
TOP:
MSC:
74. ANS:
LOC:
TOP:
MSC:
75. ANS:
LOC:
KEY:
76. ANS:
LOC:
KEY:
77. ANS:
LOC:
TOP:
MSC:
78. ANS:
LOC:
TOP:
KEY:
NOT:
79. ANS:
LOC:
TOP:
MSC:
80. ANS:
LOC:
TOP:
C
PTS: 1
DIF: Level B
REF: HLGM0713
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 7.2 Use the Converse of the Pythagorean Theorem
classifying triangles
MSC: DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: HLGM0728
NCTM.PSSM.00.MTH.9-12.GEO.1.a
TOP: Lesson 7.4 Special Right Triangles
special right triangles | 45-45-90 triangle
MSC: DOK 1
978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: HLGM0738
Lesson 7.5 Apply the Tangent Ratio
KEY: tangent ratio
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: PMG80819
NT.CCSS.MTH.10.9-12.G.SRT.8
NCTM.PSSM.00.MTH.9-12.GEO.1.d | NCTM.PSSM.00.MTH.9-12.PRS.2
Lesson 7.5 Apply the Tangent Ratio
KEY: word | tangent ratio
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: MHGM0136
Lesson 7.6 Apply the Sine and Cosine Ratios
sine and cosine ratios | trigonometric ratios
MSC: DOK 1
978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: HLGM0741
NCTM.PSSM.00.MTH.9-12.NOP.3.a
Lesson 7.6 Apply the Sine and Cosine Ratios
KEY: sine and cosine ratios | calculator
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MLGE0381
NCTM.PSSM.00.MTH.9-12.GEO.1.d
Lesson 7.6 Apply the Sine and Cosine Ratios
KEY: sine and cosine ratios
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: HLGM0743
NCTM.PSSM.00.MTH.9-12.GEO.1.d
TOP: Lesson 7.7 Solve Right Triangles
inverse tangent
MSC: DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: PHGM1106
NCTM.PSSM.00.MTH.9-12.GEO.1.d
TOP: Lesson 7.7 Solve Right Triangles
sine and cosine ratios
MSC: DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: HLGM0457
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 8.2 Use Properties of Parallelograms KEY:
angle measure | parallelogram
DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: MLGE0285
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 8.2 Use Properties of Parallelograms
parallelogram | consecutive interior angles | property
MSC: DOK 2
978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MHN90085
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 8.2 Use Properties of Parallelograms KEY:
angle measure | parallelogram | diagonals
DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: TASH0019
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 8.4 Properties of Rhombuses, Rectangles, and Squares
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
KEY:
NOT:
ANS:
LOC:
TOP:
MSC:
ANS:
LOC:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
NOT:
ANS:
LOC:
KEY:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
TOP:
MSC:
ANS:
NAT:
KEY:
property | quadrilateral | geometric figure
MSC: DOK 1
978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MHST0016
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 8.5 Use Properties of Trapezoids and Kites
KEY: trapezoid | midsegment
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MIM10065
NCTM.PSSM.00.MTH.9-12.GEO.1.a
Lesson 8.6 Identify Special Quadrilaterals
KEY: quadrilateral | identify
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: POW70028
Lesson 10.1 Use Properties of Tangents
KEY: circle | chord
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: MLGE0166
Lesson 10.1 Use Properties of Tangents
KEY: circle | chord | endpoint | segment
DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: HLGM0829
Lesson 10.1 Use Properties of Tangents
KEY: circle | diameter | radius
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: HLGM0950
Lesson 10.1 Use Properties of Tangents
KEY: circle | tangent | intersect
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MLGE0100
Lesson 10.2 Find Arc Measures
KEY: circle | angle | triangle | arc length
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: HLGM0970
Lesson 10.2 Find Arc Measures
KEY: arc | minor
MSC: DOK 1
978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: MC100096
NCTM.PSSM.00.MTH.9-12.PRS.2
TOP: Lesson 10.2 Find Arc Measures
word | angle | real-life | measure
MSC: DOK 1
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: HLGM0980
Lesson 10.3 Apply Properties of Chords
KEY: diameter
DOK 1
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: MLGE0460
Lesson 10.4 Use Inscribed Angles and Polygons
KEY: angle | measure | arc
DOK 1
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: DJAM1012
Lesson 10.5 Apply Other Angle Relationships in Circles KEY: angle | arc | degrees
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MLGE0108
Lesson 10.5 Apply Other Angle Relationships in Circles KEY: circle | chord | angle
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: XMOD0510
Lesson 10.6 Find Segment Lengths in Circles
KEY: circle | chord | length
DOK 1
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: DBIM0719
NT.CCSS.MTH.10.9-12.G.GPE.1 TOP: Lesson 10.7 Write and Graph Equations of Circles
equation | identify | circle | radius | center
MSC: DOK 1
NOT:
96. ANS:
TOP:
MSC:
97. ANS:
TOP:
MSC:
98. ANS:
LOC:
TOP:
MSC:
99. ANS:
LOC:
KEY:
100. ANS:
LOC:
KEY:
101. ANS:
LOC:
KEY:
MSC:
102. ANS:
LOC:
TOP:
MSC:
103. ANS:
NAT:
TOP:
MSC:
104. ANS:
NAT:
TOP:
MSC:
105. ANS:
NAT:
TOP:
MSC:
106. ANS:
LOC:
TOP:
MSC:
107. ANS:
NAT:
TOP:
MSC:
978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MLGE0266
Lesson 11.1 Circumference and Arc Length
KEY: circle | circumference
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MGEO0025
Lesson 11.1 Circumference and Arc Length
KEY: circle | radius | arc length
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level A
REF: MLA20277
NCTM.PSSM.00.MTH.9-12.MEA.2.b
Lesson 11.1 Circumference and Arc Length
KEY: circle | area | sector
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level A
REF: MGEO0031
NCTM.PSSM.00.MTH.9-12.MEA.2.b
TOP: Lesson 11.2 Areas of Circles and Sectors
circle | area MSC: DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: MGEO0032
NCTM.PSSM.00.MTH.9-12.MEA.2.b
TOP: Lesson 11.2 Areas of Circles and Sectors
square | circle | area
MSC: DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level B
REF: MLGE0275
NCTM.PSSM.00.MTH.9-12.MEA.2.b
TOP: Lesson 11.2 Areas of Circles and Sectors
circle | chord | area | sector | triangle | Pythagorean Theorem
DOK 2
NOT: 978-0-547-31534-8
B
PTS: 1
DIF: Level B
REF: TASH0033
NCTM.PSSM.00.MTH.9-12.MEA.2.b | NCTM.PSSM.00.MTH.9-12.PRS.2
Lesson 11.6 Volume of Prisms and Cylinders
KEY: volume | rectangular | solid | prism | box
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level B
REF: HLGM1172
NT.CCSS.MTH.10.9-12.G.GMD.3
LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b
Lesson 11.6 Volume of Prisms and Cylinders
KEY: right | volume | cylinder | circular
DOK 2
NOT: 978-0-547-31534-8
A
PTS: 1
DIF: Level B
REF: MHGM0097
NT.CCSS.MTH.10.9-12.G.GMD.3
LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b
Lesson 11.7 Volumes of Pyramids and Cones
KEY: square | volume | pyramid
DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level A
REF: MLGE0320
NT.CCSS.MTH.10.9-12.G.GMD.3
LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b
Lesson 11.7 Volumes of Pyramids and Cones
KEY: volume | cone
DOK 2
NOT: 978-0-547-31534-8
D
PTS: 1
DIF: Level A
REF: HLGM1195
NCTM.PSSM.00.MTH.9-12.MEA.2.b
Lesson 11.8 Surface Area and Volume of Spheres
KEY: area | surface | sphere
DOK 2
NOT: 978-0-547-31534-8
C
PTS: 1
DIF: Level B
REF: MLGE0324
NT.CCSS.MTH.10.9-12.G.GMD.3
LOC: NCTM.PSSM.00.MTH.9-12.MEA.2.b
Lesson 11.8 Surface Area and Volume of Spheres
KEY: diameter | volume | sphere
DOK 2
NOT: 978-0-547-31534-8
SHORT ANSWER
108. ANS:
PTS: 1
DIF: Level A
REF: AGEO0705
KEY: special right triangles | 30-60-90 triangle
NOT: 978-0-547-31534-8
TOP: Lesson 7.4 Special Right Triangles
MSC: DOK 1