An Efficient Algorithm for Row Minima Computations on Basic Reconfigurable Meshes Koji Nakano, Member, IEEE, and Stephan Olariu, Member, IEEE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM, VOL. 9, JUNE 1998, pp. 561-569 Abstract The problem of computing the minima of monotone matrix is import in image processing, pattern recognition, text editing , facility location, optimization , and VLSI. Our row-minima algorithm runs in O( l o gn ) t i me i f 1 ≦ m≦ 2 a n d i n O( log n log log m ) t i me i f m > 2 . log m 1. Introduction Matrix A is termed monotone if ,for every i , j ,1≦ i ≦ j ≦m, the smallest value in row j lies below or to the right of the smallest value in row i . 2 13 5 10 20 16 3 6 9 21 6 10 9 4 10 9 8 8 17 9 11 5 22 17 19 2. Prefix-Maxima-1 2-1. O(1) time for computing the prefix maxima of n items on a BRM of size n x n . 2-2. O( log n ) time for computing the prefix maxima of n items in one log m row of a BRM of size m x n with 2≦ m≦ n . 3. Selective-Row-Minima Step1. 6 4 4 2 3 6 1 5 3 8 9 9 R 1 ,1 5 R 2 ,1 3 4 5 10 11 7 13 R2 R1 1 10 4 6 9 8 8 10 12 R 1 ,2 2 R 2 ,2 13 15 Step2. a1,1 a2,1 a1,2 a2,2 Step3. T1 T2 Step4. Using the 2-2. ,the compute the minimun in the first row of each Ti in O( log N log K ) log M log K = O( log N ) time. log M 4. Row-Minima 2 Step1. 3 T1 6 4 9 T2 8 7 9 T3 8 Step2. Using selective Row Minima compute the minima of the itms in the first row in log n O( ) time. log m T1 T2 T3 Step3. c1 T1 R1 c2 R2 T2 c3 T3 R3 Step4. For log log m iterations ,repeat Step 1-3 above in each submesh. 5. Concluding Remarks Created by :Kuen-Feng Huang Date : Feb. 22, 2000
© Copyright 2026 Paperzz