Extremum Properties of Orthogonal Quotients Matrices By Achiya Dax Hydrological Service, Jerusalem , Israel e-mail: [email protected] The Eckart – Young Theorem (1936) says that the “truncated SVD” matrix Ak = Uk Dk Vk T solves the least norm problem minimize subject to F ( B ) = || A - B|| F 2 rank(B) k ( Also called the Schmidt-Mirsky Theorem. ) Ky Fan’s Maximum Principle (1949) S a symmetric positive semi-definite n x n matrix Yk the set of orthogonal n x k matrices l1 + … + lk = max { trace ( YkT S Yk ) | YkYk } Solution is obtained for the Spectral matrix Vk = [v1 , v2 , … , vk] . giving the sum of the largest k eigenvalues. Outline * The Eckart – Young Theorem and Orthogonal Quotients matrices. * The Orthogonal Quotients Equality. * The Symmetric Quotients Equality and Ky Fan’s extremum principles. * An Extended Extremum Principle. The Singular Value Decomposition A = U S VT S = diag {s1 , s2 , … , sp } , p = min { m, n} U = [u1 , u2 , … , up] , UT U = I V = [v1 , v2 , … , vp] , VT V = I AV = US AT U = V S A vj = sj uj , AT uj = sj vj j = 1, … , p . Low - Rank Approximations Ak = T Uk Dk Vk Dk = diag {s1 , s2 , … , sk } , Uk = [u1 , u2 , … , uk] , UkT Uk = I Vk = [v1 , v2 , … VkT Vk = I , v k] , The Eckart – Young Theorem (1936) says that the “truncated SVD” matrix Ak = Uk Dk Vk T solves the least norm problem minimize subject to F ( B ) = || A - B|| F 2 rank(B) k ( Also called the Schmidt-Mirsky Theorem. ) Rank - k Matrices B = Xk Rk YkT where Rk is a k x k matrix Xk = [x1 , x2 , … , xk ] , Yk = [y1 , y2 , … , yk ] , XkT Xk = I YkT Yk = I The Eckart – Young Problem can be rewritten as minimize F ( B ) = || A - Xk Rk YkT || F 2 subject to XkT Xk = I and YkT Yk = I . Theorem 1: Given a pair of orthogonal matrices, Xk and Yk , the related “Orthogonal Quotients Matrix” XkT A Yk = ( xiTAyj ) solves the problem minimize F ( Rk ) = || A - Xk Rk YkT || F 2 Notation: Xk - denotes the set of all real m x k orthogonal matrices Xk , Xk = [x1 , x2 , … , xk] , XkT Xk = I Yk - denotes the set of all real n x k orthogonal matrices Yk , Yk = [y1 , y2 , … , yk] , YkT Yk = I Corollary 1 : The Eckart – Young Problem can be rewritten as minimize F ( Xk,Yk ) = || A - Xk Rk YkT || F 2 subject to where XkXk and YkYk , Rk is the “Orthogonal Quotients Matrix” Rk = XkT A Yk . The Orthogonal Quotients Equality For any pair of orthogonal matrices, XkXk and YkYk , ||A - Xk Rk YkT || F 2 = ||A|| F 2 - || Rk || F 2 where Rk is the orthogonal quotients matrix Rk = XkT A Yk . Corollary : The Eckart–Young Problem minimize F ( Xk,Yk ) = || A - Xk Rk YkT || F 2 subject to XkXk and YkYk . is equivalent to maximize ||XkT A Yk || F 2 subject to XkXk and YkYk , and the SVD matrices Uk giving the optimal value of and Vk solves both problems, s12 + s22 + … + sk2 . Question: Is the related minimum problem minimize || (Xk)T A Yk || F 2 subject to XkXk and YkYk , solvable ? Using the Orthogonal Quotients Equality the last problem takes the form maximize F ( Xk,Yk ) = || A - Xk Rk YkT || F 2 subject to XkXk and YkYk . Note that the more general problem maximize F ( B ) = || A - B|| F 2 subject to rank(B) k is not solvable . Returning to symmetric matrices How we extend the Orthogonal Quotients Equality to symmetric matrices ? The Spectral Decomposition S = ( Sij ) a symmetric positive semi-definite n x n matrix With eigenvalues l1 l2 ln and eigenvectors v1 , v2 , … , vn S vj = lj vj , j = 1, … , n . SV=VD V = [v1 , v2 , … , vn] , VT V = V VT = I D = diag { l1 , l2 , … , ln } S = V D VT = S lj vj vjT Recall that Rayleigh Quotient Matrices Sk = YkT S Yk play important role in Ky Fan’s Extremum Principles . Ky Fan’s Maximum Principle S a symmetric positive semi-definite n x n matrix Yk the set of orthogonal n x k matrices l1 + … + lk = max { trace ( YkT S Yk ) | YkYk } Solution is obtained for the Spectral matrix Vk = [v1 , v2 , … , vk] . which is related to the largest k eigenvalues. Ky Fan’s Minimum Principle S a symmetric n x n matrix . Yk the set of orthogonal n x k matrices . ln-k+1 + … + ln =min { trace ( YkT S Yk ) | YkYk } Solution is obtained for the Spectral matrix Vk = [vn-k+1 , … , vn] , which is related to the smallest k eigenvalues. Question : Can we formulate the Symmetric Quotients Equality in terms of trace ( Sk ) = trace( YkT S Yk ) = S yjT S yj The Symmetric Quotients Equality S a symmetric n x n matrix YkYk an orthogonal n x k matrix Sk =YkT S Yk the related “Rayleigh quotient matrix” trace (S - Yk Sk YkT ) = trace( S ) - trace( Sk ) Corollary 1 : Ky Fan’s maximum problem maximize trace (Yk S YkT ) subject to YkYk , is equivalent to minimize trace ( S - Yk Sk YkT ) subject to YkYk . The Spectral matrix Vk = [v1 ,v2 , … ,vk] solves both problems, giving the optimal value of l1 + … + lk . Recall that: The Eckart–Young Problem minimize F ( Xk,Yk ) = || A - Xk Rk YkT || F 2 subject to XkXk and YkYk . is equivalent to maximize ||XkT A Yk || F 2 subject to XkXk and YkYk , and the SVD matrices Uk giving the optimal value of and Vk solves both problems, s12 + s22 + … + sk2 . Corollary 2 : Ky Fan’s minimum problem minimize trace (Yk S YkT ) subject to YkYk , is equivalent to maximize trace ( S - YkT Sk Yk ) subject to YkYk . The matrix Vk = [vn-k+1 , … , vn] solves both problems, giving the optimal value of ln-k+1 + … + ln . Extended Exremum Principles Can we extend these extremums from eigenvalues of symmetric matrices to singular values of rectangular matrices ? Notation: 1 m* m , 1 n* n , Xm* - denotes the set of all real m x m* orthogonal matrices Xm* , Xm* = [x1 , x2 , … , xm*] , Xm*T Xm* = I Yn* - denotes the set of all real n x n* orthogonal matrices Yn* , Yn* = [y1 , y2 , … , yn*] , Yn*T Y* = I Notations : Given Xm* Xm* and Yn* Ym* , the m*x n* matrix ( Xm*)TA Yn* = ( xiTAyj ) is called “Orthogonal Quotients Matrix” . Notations : The singular values of the Orthogonal Quotients Matrix ( Xm*)TA Yn* = ( xiTAyj ) are denoted as h1 h2 … hk 0 , where k = min { m*, n* } . Questions : Which choice of orthogonal matrices Xm* Xm* and Yn* Ym* , maximizes (or minimizes ) the sum (h1)p + (h2)p + … + (hk)p where p > 0 is a given positive constant . An Extended Maximum Principle: The SVD matrices Um* = [u1 , u2 , … , um*] and Vn* = [v1 , v2 , … , vn*] solve the problem maximize F ( Xm* , Yn* ) = (h1)p + (h2)p + … + (hk)p subject to Xm* Xm* and Yn* Yn* , for any positive power p > 0 , giving the optimal value of (s1)p + (s2)p + … + (sk)p . An Extended Maximum Principle That is, for any positive power p > 0 , (s1)p + (s2)p + … + (sk)p = max{ (h1)p + (h2)p +…+ (hk)p | Xm* Xm* and Yn* Yn*}, and the maximal value is attained for the matrices Um* =[u1 , u2 , … ,um*] and Vn* =[v1 ,v2 , … ,vn*] . The proof is based on “rectangular” versions of Cauchy Interlace Theorem and Poincare Separation Theorem . Corollary 1 : When p= 1 the SVD matrices Um* = [u1 , u2 , … , um*] and Vn* = [v1 , v2 , … solve the “Rectangular Ky Fan problem” maximize F ( Xm* , Yn* ) = h1 + h2 + … + hk subject to Xm* Xm* and Yn* Yn* , giving the optimal value of s1 + s2 + … + sk . , vn*] Corollary 2 : When p= 1 and m* = n* = k the SVD matrices Uk = [u1 , u2 , … , uk] and Vk = [v1 , v2 , … , vk] solve the maximum trace problem maximize F ( Xk , Yk ) = trace ( (Xk)T A Yk ) subject to Xk Xk and Yk Yk , giving the optimal value of s1 + s2 + … + sk . * See also Horn & Johnson, “Topics in Matrix Analysis”, p. 195. Corollary 3 : When p= 2 the SVD matrices Um* = [u1 , u2 , … , um*] and Vn* = [v1 , v2 , … , vn*] solve the “rectangular Eckart–Young problem” maximize F ( Xm* , Yn* ) = || (Xm*)T A Yn* || F 2 subject to Xm* Xm* and Yn* Yn* , giving the optimal value of (s1)2 + (s2)2 + … + (sk)2 . An Extended Minimum Principle Question: Can we prove a similar minimum principle ? Answer: Yes, but the solution matrices are more complicated. An Extended Minimum Principle: Here we consider the problem minimize F(Xm* ,Yn* ) = (h1)p + (h2)p + … subject to + (hk)p Xm* Xm* and Yn* Yn* , for any positive power p > 0 . The solution matrices are obtained by deleting some columns from the SVD matrices U = [u1 , u2 , … , um] and V = [v1 , v2 , … , vn] . Summary * The Eckart – Young Theorem and Orthogonal Quotients matrices. * The Orthogonal Quotients Equality. * The Symmetric Quotients Equality and Ky Fan’s extremum principles. * An Extended Extremum Principle. The END Thank You
© Copyright 2026 Paperzz