Non-commutative structures and operators on a Hilbert space

Non-commutative structures and operators
on a Hilbert space
D.Treschev
Steklov Mathematical Institute,
Moscow, Russia.
Luxembourg, September 2009
2
Motivation
Consider the operators of the coordinate and the momentum of a
quantum particle
๐‘ฅ
ห†๐‘— ๐œ“ = ๐‘ฅ๐‘— ๐œ“(๐‘ฅ),
๐‘ห†๐‘— ๐œ“ = โˆ’๐‘–โ„
โˆ‚
๐œ“(๐‘ฅ),
โˆ‚๐‘ฅ๐‘—
๐‘ฅ โˆˆ โ„๐‘› .
They generate the Heisenberg algebra of polynomial (non-commutative)
expressions in ๐‘ฅ
ห†๐‘— , ๐‘ห†๐‘— with the identities
๐‘ฅ
ห†๐‘— ๐‘ฅ
ห†๐‘˜ โˆ’ ๐‘ฅ
ห†๐‘˜ ๐‘ฅ
ห†๐‘— = 0,
๐‘ห†๐‘— ๐‘ห†๐‘˜ โˆ’ ๐‘ห†๐‘˜ ๐‘ห†๐‘— = 0,
๐‘ห†๐‘— ๐‘ฅ
ห†๐‘˜ โˆ’ ๐‘ฅห†๐‘˜ ๐‘ห†๐‘— = โˆ’๐‘–โ„๐›ฟ๐‘—๐‘˜ .
3
Any element of the Heisenberg algebra corresponds to a differential
operator with polynomial in ๐‘ฅ coefficients.
Natural problem. To extend the Heisenberg algebra so that its elements
will still correspond to โ€œgoodโ€ operators on a reasonable function space.
We propose a certain approach to this problem. But first we develop
some formalism, called the non-commutative structures.
4
ห† +, โ‹…) be the free associative algebra over โ„‚ with ๐‘š generators
Let (๐•†,
๐‘งห†1 , . . . , ๐‘งห†๐‘š :
ห†
๐นห† โˆˆ ๐•†
โ‡”
๐นห† =
โˆ‘
ห†
๐‘“ห†๐œห† ๐œ,
๐œห†
where ๐œห† is a word, composed from the letters ๐‘งห†1 , . . . , ๐‘งห†๐‘š , and ๐‘“ห†๐œห† โˆˆ โ„‚.
โˆ‘
Empty word is identified with 1. Example. ๐นห† = โˆž ๐‘˜! ๐‘งห†1 ๐‘งห†๐‘˜ ๐‘งห†2 .
๐‘˜=1
2 1
The corresponding commutative object, (๐•†, +, โ‹…), is a commutative
associative algebra with generators ๐‘ง1 , . . . , ๐‘ง๐‘š .
๐น โˆˆ๐•†
โ‡”
๐น =
โˆ‘
๐‘“๐›ผ ๐‘ง ๐›ผ ,
๐›ผโˆˆโ„ค๐‘š
+
where ๐›ผ is a multi-index, an element of โ„ค๐‘š
+ = {0, 1, . . .}, and ๐‘“๐›ผ โˆˆ โ„‚.
5
ห† โ†’๐•†
ห† and โ˜… : ๐•† โ†’ ๐•†.
Other structures are the involutions โ˜… : ๐•†
โ˜…
ห† we have: ๐œห† = ๐‘“ห† ๐‘งห†๐‘— โ‹… ๐‘งห†๐‘— .
For any word ๐œห† = ๐‘“ห†๐œ ๐‘งห†๐‘— โ‹… ๐‘งห†๐‘— โˆˆ ๐•†
1
๐‘˜
๐œ
๐‘˜
For any monomial ๐‘“๐›ผ ๐‘ง ๐›ผ โˆˆ ๐•† we have: (๐‘“๐›ผ ๐‘ง ๐›ผ )โ˜… = ๐‘“ ๐›ผ ๐‘ง ๐›ผ .
Then โ˜… is an anti-isomorphism and โ˜…2 = id.
1
6
ห† โ†’ ๐•†. For any
We define the homomorphism of โ€œaveragingโ€ aver : ๐•†
word ๐œห†
ห† = ๐‘ง ๐›ผ,
aver(๐œ)
where ๐‘งห†๐‘— enters ๐œห† exactly ๐›ผ๐‘— times.
Example: aver(ห†
๐‘ง2 ๐‘งห†12 ๐‘งห†2 ๐‘งห†13 ) = ๐‘ง15 ๐‘ง22 .
ห† by linearity.
Then aver is uniquely continued to ๐•†
7
Below we need the derivations
โˆ‚1 , . . . , โˆ‚๐‘š โˆˆ Der(๐•†),
ห†
โˆ‚ห†1 , . . . , โˆ‚ห†๐‘š โˆˆ Der(๐•†).
By definition
โˆ‚๐‘— (๐‘ง๐‘˜ ) = โˆ‚ห†๐‘— (ห†
๐‘ง๐‘˜ ) = ๐›ฟ๐‘—๐‘˜ ,
๐‘—, ๐‘˜ = 1, . . . , ๐‘š.
Hence, โˆ‚๐‘— = โˆ‚/โˆ‚๐‘ง๐‘— . Obviously,
โˆ‚๐‘— aver = aver โˆ‚ห†๐‘— ,
โ˜… aver = aver โ˜…,
โˆ‚๐‘— โ˜… = โ˜…โˆ‚๐‘— ,
โˆ‚ห†๐‘— โ˜… = โ˜…โˆ‚ห†๐‘— .
8
Let ๐ท โŠ‚ โ„๐‘š be a domain. Consider the trivial bundles
๐œ‹ : ๐ท × ๐•† โ†’ ๐ท,
ห† โ†’ ๐ท.
๐œ‹
ห† :๐ท×๐•†
Sections of these bundles have the form
๐น = ๐น (๐œ‰; ๐‘ง),
๐นห† = ๐นห† (๐œ‰; ๐‘งห†),
ห†
where for any ๐œ‰ โˆˆ ๐ท ๐น โˆˆ ๐•† and ๐นห† โˆˆ ๐•†.
The sections are said to be horizontal if
(โˆ‚๐œ‰๐‘— โˆ’ โˆ‚๐‘— )๐น = 0,
(โˆ‚๐œ‰๐‘— โˆ’ โˆ‚ห†๐‘— )๐นห† = 0.
9
ห†
The algebras of horizontal sections are denoted ๐•†(๐ท), ๐•†(๐ท).
For any ๐œ‰0 โˆˆ ๐ท there are obvious isomorphisms
๐•†(๐ท)โˆฃ๐œ‰=๐œ‰0 โˆผ
=๐•†
and
โˆผ ห†
ห†
๐•†(๐ท)โˆฃ
๐œ‰=๐œ‰0 = ๐•†.
ห†
Therefore we have: aver : ๐•†(๐ท)โˆฃ
๐œ‰=๐œ‰0 โ†’ ๐•†(๐ท)โˆฃ๐œ‰=๐œ‰0 . These maps generate
ห†
the averaging homomorphism aver : ๐•†(๐ท)
โ†’ ๐•†(๐ท).
ห†
The involutions โ˜… are naturally extended to anti-isomorphisms of ๐•†(๐ท)
and ๐•†(๐ท).
Examples. 1. The simplest examples (except constants) are
z๐‘— = ๐œ‰๐‘— + ๐‘ง๐‘— โˆˆ ๐•†(โ„๐‘š ),
10
ห† ๐‘š ).
zฬ‚๐‘— = ๐œ‰๐‘— + ๐‘งห†๐‘— โˆˆ ๐•†(โ„
2. Polynomials in z1 , . . . , z๐‘š lie in ๐•†(โ„๐‘š ). Non-commutative polynomiห† ๐‘š ).
als in zฬ‚1 , . . . , zฬ‚๐‘š lie in ๐•†(โ„
3. Proposition. ๐น โˆˆ ๐•†(๐ท) iff ๐น (๐œ‰; ๐‘ง) = ๐‘“ (z), where ๐‘“ : ๐ท โ†’ โ„‚ is a
smooth function.
Corollary. ๐•†(๐ท) โˆผ
= ๐ถ โˆž (๐ท, โ„‚).
ห†
Informally speaking, any ๐นห† โˆˆ ๐•†(๐ท)
is a โ€œnon-commutative smooth
function of zฬ‚โ€. Sometimes we will use the notation ๐นห† = ๐นห† (zฬ‚).
11
ห†
We extend ๐•†(๐ท)
by adding the element ๐‘Ÿห† which commutes with
everything,
โˆ‚๐œ‰๐‘— ๐‘Ÿห† = โˆ‚๐‘— ๐‘Ÿห† = โˆ‚ห†๐‘— ๐‘Ÿห† = 0,
๐‘Ÿห†โ˜… = โˆ’ห†
๐‘Ÿ.
Physical meaning of ๐‘Ÿห† is โˆ’๐‘–โ„.
ห† ๐‘Ÿห†(๐ท). Averaging aver : ๐•†
ห† ๐‘Ÿห†(๐ท) โ†’
The extended algebra is denoted ๐•†
๐•†(๐ท) is the same as before, but first one should put ๐‘Ÿห† = 0.
ห† ๐‘Ÿห†(๐ท) generated by the elements
Consider the ideal ๐ฝ โˆˆ ๐•†
12
ห† ๐‘Ÿห†(๐ท).
๐œ‘ห†๐‘—๐‘˜ โˆˆ ๐•†
zฬ‚๐‘— zฬ‚๐‘˜ โˆ’ zฬ‚๐‘˜ zฬ‚๐‘— โˆ’ ๐‘Ÿห†๐œ‘ห†๐‘—๐‘˜ ,
ห† ๐ฝ (๐ท) = ๐•†
ห† ๐‘Ÿห†(๐ท)/๐ฝ. Averaging (again denoted by aver) is defined
We put ๐•†
ห† ๐ฝ so that the following diagram commutes
on ๐•†
ห† ๐‘Ÿห†(๐ท)
๐•†
ห† ๐ฝ (๐ท)
๐•†
โˆ’โ†’
aver โ†˜
โ†™ aver
๐•†(๐ท)
13
Definition. If ๐ฝ = ๐ฝ โ˜… , then ๐ฝ is said to be Hermitian.
ห† ๐‘Ÿห†(๐ท) โ†’ ๐•†
ห† ๐ฝ (๐ท) is not a divisor
If the image of ๐‘Ÿห† under the projection ๐•†
ห† ๐ฝ (๐ท) then ๐ฝ is said to be Poissonian.
of zero in ๐•†
Below for brevity we denote this image again by ๐‘Ÿห†.
Proposition. ๐ฝ is Poissonian iff for all ๐‘—, ๐‘˜, ๐‘™
๐œ‘ห†๐‘—๐‘˜ + ๐œ‘ห†๐‘˜๐‘— โˆˆ ๐ฝ,
zฬ‚๐‘— ๐œ‘ห†๐‘˜๐‘™ + zฬ‚๐‘˜ ๐œ‘ห†๐‘™๐‘— + zฬ‚๐‘™ ๐œ‘ห†๐‘—๐‘˜ โˆˆ ๐ฝ.
14
Main Example. Suppose that ๐‘š = 2๐‘›. We denote
zฬ‚๐‘— = xฬ‚๐‘— ,
zฬ‚๐‘—+๐‘› = pฬ‚๐‘— ,
๐‘— = 1, . . . , ๐‘›,
and generate ๐ฝ by the elements
xฬ‚๐‘— xฬ‚๐‘˜ โˆ’ xฬ‚๐‘˜ xฬ‚๐‘— ,
pฬ‚๐‘— pฬ‚๐‘˜ โˆ’ pฬ‚๐‘˜ pฬ‚๐‘— ,
pฬ‚๐‘— xฬ‚๐‘˜ โˆ’ xฬ‚๐‘˜ pฬ‚๐‘— โˆ’ ๐‘Ÿห†๐›ฟ๐‘—๐‘˜ ,
xฬ‚๐‘— pฬ‚๐‘˜ โˆ’ pฬ‚๐‘˜ xฬ‚๐‘— + ๐‘Ÿห†๐›ฟ๐‘—๐‘˜ .
ห† ๐ฝ (โ„2๐‘› )
๐ฝ is Poissonian and Hermitian. The corresponding algebra ๐•†
is denoted โ„ฬ‚(โ„2๐‘› ). Subalgebra of polynomial elements in โ„ฬ‚(โ„2๐‘› ) is
isomorphic to the Heisenberg algebra.
Any Poissonian ideal generates a quantum bracket [ , ]:
ห† =
[๐นห† , ๐บ]
)
1( ห† ห†
ห† ๐นห†
๐น๐บ โˆ’ ๐บ
๐‘Ÿห†
15
ห†โˆˆ๐•†
ห†๐ฝ.
for any ๐นห† , ๐บ
ห† ๐ฝ because ๐นห† ๐บ
ห†โˆ’
Important: the right-hand side of this equation lies in ๐•†
ห†
ห†
๐บ๐น is divisible by ๐‘Ÿห†.
Then the corresponding classical Poisson bracket { , } is uniquely
determined from the commutative diagram
[,]
ห† ๐ฝ (๐ท) × ๐•†
ห† ๐ฝ (๐ท) โˆ’โˆ’โˆ’
ห† ๐ฝ (๐ท)
๐•†
โˆ’โ†’ ๐•†
โ
โ
โ
โaver
aver × avery
y
๐•†(๐ท) × ๐•†(๐ท)
{,}
โˆ’โˆ’โˆ’โˆ’โ†’ ๐•†(๐ท)
ห† ๐ฝ (๐ท).
If ๐ฝ is Hermitian, โ˜… is naturally defined as an anti-isomorphism of ๐•†
16
If we regard ๐ท as a coordinate domain, these algebras can be defined
over a manifold. They are called non-commutative structures.
This language is analogous to the language of star-products in deformation quantization. There are strong relations between this approach to
deformation quantization and the traditional one, but we will not discuss
them now.
We concentrate on the algebra โ„ฬ‚(โ„2๐‘› ) and try to interpret its elements
as operators on ๐ฟ2 (โ„๐‘› ).
17
Recall the standard conventions:
xฬ‚๐‘— ๐œ“ = ๐‘ฅ๐‘— ๐œ“(๐‘ฅ),
pฬ‚๐‘— ๐œ“ = โˆ’๐‘–โ„
โˆ‚
๐œ“(๐‘ฅ),
โˆ‚๐‘ฅ๐‘—
๐‘Ÿห†๐œ“ = โˆ’๐‘–โ„๐œ“,
๐œ“ : โ„๐‘› โ†’ โ„‚.
Consider ๐นห† โˆˆ โ„(โ„2๐‘› ). How it is possible to associate with ๐นห† an
operator on ๐ฟ2 (โ„๐‘› ) ? If ๐นห† is not polynomial in pฬ‚, power expansions do
not help because we have to deal with a โ€œdifferential operator of an infinite
orderโ€.
Main idea. For any ๐œ โˆˆ โ„๐‘š
๐‘’โˆ’๐‘–๐œ pฬ‚ ๐œ“(๐‘ฅ) = ๐‘’โˆ’โ„
a quite innocent operator.
โˆ‘
๐œ๐‘— โˆ‚/โˆ‚๐‘ฅ๐‘—
๐œ“(๐‘ฅ) = ๐œ“(๐‘ฅ โˆ’ โ„๐œ),
18
Expansion in exponents ๐‘’โˆ’๐‘–๐œ pฬ‚ means the Fourier expansion in the
variable pฬ‚. The most convenient space for harmonic analysis on โ„๐‘š is
the Schwartz space ๐’ฎ. We define
โˆž
{
โˆ‘
๐’ฎ๐‘Ÿห† = ๐‘“ (๐œ‚, ๐œ, ๐‘Ÿห†) =
๐‘“๐‘˜ (๐œ‚, ๐œ)ห†
๐‘Ÿ๐‘˜ ,
๐‘˜=0
}
๐‘“๐‘˜ โˆˆ ๐’ฎ ,
๐œ‚, ๐œ โˆˆ โ„๐‘› ,
the series is formal. The structure of a topological space is introduced in
a standard way.
19
Fourier transform:
๐’ฎ๐‘Ÿห† โˆ‹ ๐‘“ 7โ†’ ๐‘“ห† = โ„ฑ (๐‘“ ) =
1
(2๐œ‹)๐‘›/2
โˆซ
๐‘“ (xฬ‚, ๐œ, ๐‘Ÿห†)๐‘’โˆ’๐‘–๐œ pฬ‚ ๐‘‘๐œ.
โ„๐‘›
We denote ๐’ฎห†๐‘Ÿห† = โ„ฑ (๐’ฎ๐‘Ÿห†). Proposition. ๐’ฎห†๐‘Ÿห† โŠ‚ โ„ฬ‚(โ„2๐‘› ) is a subalgebra.
Inverse Fourier transform:
๐’ฎห†๐‘Ÿห† โˆ‹ ๐‘“ห† 7โ†’ ๐‘“ = โ„ฑ โˆ’1 (๐‘“ห†) =
1
(2๐œ‹)๐‘›/2
โˆซ
๐‘“ห†(xฬ‚, pฬ‚)๐‘’๐‘–๐œ pฬ‚ ๐‘‘๐‘,
โ„๐‘›
where as usual, pฬ‚ = ๐‘ + ๐‘ห†.
Proposition. โ„ฑ โˆ’1 โ„ฑ = id๐’ฎ๐‘Ÿห† and โ„ฑ โ„ฑ โˆ’1 = id๐’ฎห†๐‘Ÿห† .
20
2๐‘›
ห†
The derivations โˆ‚๐‘— still exist in โ„(โ„ ). We use for them the notation
ห†
โˆ‚๐‘ฅห†๐‘— and โˆ‚ห†๐‘ห†๐‘— .
Proposition. For any ๐‘“ โˆˆ ๐’ฎ๐‘Ÿห† and ๐‘“ห† = โ„ฑ (๐‘“ )
โˆ‚ห†๐‘ห†๐‘— ๐‘“ห† = โ„ฑ (โˆ’๐‘–๐œ๐‘— ๐‘“ ),
๐‘–๐‘“ห†pฬ‚๐‘— = โ„ฑ (โˆ‚๐‘“ /โˆ‚๐œ๐‘— ).
21
For any ๐‘“ = ๐‘“ (๐œ‚, ๐œ, ๐‘Ÿห†), ๐‘” = ๐‘”(๐œ‚, ๐œ, ๐‘Ÿห†) โˆˆ ๐’ฎ๐‘Ÿห† and ๐‘“ห† = ๐‘“ห†(xฬ‚, pฬ‚), ๐‘”ห† =
๐‘”ห†(xฬ‚, pฬ‚) โˆˆ ๐’ฎห†๐‘Ÿห† we define the convolutions
โˆซ
1
๐‘“ โˆ—๐‘” =
๐‘“ (xฬ‚, ๐œ โˆ’ ๐œŒ, ๐‘Ÿห†) ๐‘”(xฬ‚ + ๐‘–ห†
๐‘Ÿ๐œ, ๐œŒ, ๐‘Ÿห†) ๐‘‘๐œŒ,
(2๐œ‹)๐‘›/2 โ„๐‘›
โˆซ
๐‘“ห† โˆ— ๐‘”ห† =
๐‘”ห†(xฬ‚, ๐‘ƒ ) ๐‘“ห†(xฬ‚, pฬ‚ โˆ’ ๐‘ƒ ) ๐‘‘๐‘ƒ.
โ„๐‘›
Proposition. Suppose that ๐‘“ห† = โ„ฑ (๐‘“ ) and ๐‘”ห† = โ„ฑ (๐‘”). Then
๐‘“ห† โˆ— ๐‘”ห† = โ„ฑ (๐‘“ ๐‘”),
๐‘“ห†๐‘”ห† = โ„ฑ (๐‘“ โˆ— ๐‘”).
22
Representation of ๐’ฎห†๐‘Ÿห† in ๐ฟ2 (โ„๐‘› ).
For any ๐‘“ห† โˆˆ ๐’ฎห†๐‘Ÿห† we have:
๐‘“ห† =
1
(2๐œ‹)๐‘›/2
โˆซ
๐‘“ (xฬ‚, ๐œ, ๐‘Ÿห†)๐‘’โˆ’๐‘–๐œ pฬ‚ ๐‘‘๐œ.
โ„๐‘›
Therefore for ๐œ“ โˆˆ ๐ฟ2 (โ„๐‘› )
๐‘“ห†๐œ“ =
1
(2๐œ‹)๐‘›/2
โˆซ
โ„๐‘›
๐‘“ (๐‘ฅ, ๐œ, โˆ’๐‘–โ„)๐œ“(๐‘ฅ โˆ’ โ„๐œ) ๐‘‘๐œ.
23
For any ๐‘“, ๐‘” โˆˆ ๐’ฎ๐‘Ÿห† and ๐‘“ห†, ๐‘”ห† โˆˆ ๐’ฎห†๐‘Ÿห† we define the scalar products
โˆซ
โŸจ๐‘“, ๐‘”โŸฉ =
๐‘“ (๐œ‚, ๐œ, ๐‘Ÿห†) ๐‘” โ˜… (๐œ‚, ๐œ, ๐‘Ÿห†) ๐‘‘๐œ‚๐‘‘๐œ,
๐‘›
โˆซโ„
ห†
โŸจ๐‘“ , ๐‘”ห†โŸฉ =
๐‘“ห†(xฬ‚, pฬ‚) ๐‘”ห†โ˜… (xฬ‚, pฬ‚) ๐‘‘๐‘ฅ๐‘‘๐‘.
โ„๐‘›
Proposition. Suppose that ๐‘“ห† = โ„ฑ (๐‘“ ) and ๐‘”ห† = โ„ฑ (๐‘”). Then
โŸจ๐‘“ห†, ๐‘”ห†โŸฉ = โŸจ๐‘“, ๐‘”โŸฉ.
24
By using these scalar products, we can consider the spaces of distributions ๐’ฎ๐‘Ÿห†โ€ฒ and ๐’ฎห†๐‘Ÿห†โ€ฒ , corresponding to the spaces of โ€œtest functionsโ€ ๐’ฎ๐‘Ÿห† and ๐’ฎห†๐‘Ÿห†.
The space ๐’ฎห†๐‘Ÿห†โ€ฒ contains the algebra of non-commutative polynomials in
xฬ‚ and pฬ‚ (the Heisenberg algebra.)
Representation of ๐’ฎห†๐‘Ÿห†โ€ฒ in ๐ฟ2 (โ„๐‘› ) is given by the same formula.
Note that ๐’ฎห†๐‘Ÿห†โ€ฒ โˆ•โŠ‚ โ„(โ„2๐‘› ) and โ„(โ„2๐‘› ) โˆ•โŠ‚ ๐’ฎห†๐‘Ÿห†โ€ฒ .
25
A possible application
ห† โˆˆ โ„ฬ‚(โ„2๐‘› ) is
Suppose that a quantum system with Hamiltonian ๐ป
integrable in the sense that there exist sufficiently regular independent
๐นห†1 , . . . , ๐นห†๐‘› โˆˆ โ„ฬ‚(โ„2๐‘› ) such that
ห† = 0.
[๐นห†๐‘— , ๐นห†๐‘˜ ] = [๐นห†๐‘— , ๐ป]
In particular, the corresponding classical Hamiltonian system, obtained by
means of the averaging homomorphism, is Liouville integrable.
26
If the classical common integral levels are compact, there exist actionangle variables.
It turns out that there exist non-commutative action-angle variables
ห†
๐ผ, ๐œ‘,
ห† i.e.,
ห† ๐‘–ห†
(a) ๐ผห† = โ„ณ(๐นห† , ๐‘–ห†
๐‘Ÿ ), ๐นห† = ๐‘Š (๐ผ,
๐‘Ÿ).
(b) ๐œ‘ห† are angular (defined mod2๐œ‹).
(c) [๐ผห†๐‘— , ๐ผห†๐‘˜ ] = [๐œ‘ห†๐‘— , ๐œ‘ห†๐‘˜ ] = 0, [๐ผห†๐‘— , ๐œ‘ห†๐‘˜ ] = ๐›ฟ๐‘—๐‘˜ .
27
Existence of such non-commutative action-angle variables has been
proven so far locally [T2007]: ๐ผห†๐‘— , ๐œ‘ห†๐‘— โˆˆ โ„ฬ‚(๐ท), where ๐ท is a neighborhood of
any classical Liouville torus. The corresponding global result is probably
much more complicated, but under reasonable assumptions does not look
hopeless.
28
Suppose that ๐ผห†๐‘— , ๐œ‘ห†๐‘— โˆˆ โ„ฬ‚(โ„2๐‘› ).
Suppose moreover that ๐ผห†๐‘— , ๐‘’๐‘–๐œ‘ห†๐‘— correspond to some good (pseudodifferential) operators.
Then for any eigenfunction ๐œ“ โˆ•โ‰ก 0, ๐นห†๐‘— ๐œ“ = ๐œ†๐‘— ๐œ“ we have:
๐นห†๐‘— ๐œ“๐‘˜ = ฮ›๐‘—๐‘˜ ๐œ“๐‘˜ ,
(
)
ฮ›๐‘—๐‘˜ = ๐‘Š๐‘— โ„ณ(๐œ†, โ„) + โ„๐‘˜, โ„ .
๐œ“๐‘˜ = ๐‘’๐‘–๐‘˜๐œ‘ห† ๐œ“,
๐‘˜ โˆˆ โ„ค.
Hence, having one eigenfunction, we obtain many (infinitely many?
all?) eigenfunctions and eigenvalues.