Identity-based encryption with (almost) tight security in the multi-instance, multi-ciphertext setting Dennis Hofheinz, Jessica Koch, Christoph Striecks Karlsruhe Institute of Technology, Germany 1 Overview • Identity-Based Encryption (IBE) • Tight Security • Underlying IBE-Scheme by Chen and Wee - Proof Idea • Result: (almost) Tight Security for MultiInstance, Multi-Ciphertext IBE 2 Identity-Based Encryption (IBE) 3 IBE-IND-CPA Security C* for id* M0 or M1 ? 1 2 succ.prob = + ε1 4 Multi-Instance, Multi-Ciphertext IBE-IND-CPA Security M0i,c or M1i,c? 1 succ.prob = + εmulti 2 5 Tight Security ... Ni instances ... Nc chall. ciphertexts Nu user secret keys security proof = reduction to hard problem (adv. = εP) attack adv. ε1 = Nu·εP (generic) attack adv. εmulti = Ni·Nc·ε1 = Ni·Nc·Nu·εP attacks potentially easier 6 Tight Security • Our goal: tight security i.e. εmulti ≈ εP independent of Ni, Nc, Nu → smaller keys, smaller groups … • recently: (somewhat) tightly secure multiinstance/multi-ciphertext PKE [HJ12, LJYP14] • [Chen,Wee13]: somewhat tightly secure IBE 1 instance/1 ciphertext: ε1 ≈ Nu·εP 7 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : normal i i depends on idi = i and position 8 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type i C*: 1* … i* id|i* = 1*… i* normal usk: type i usk: 1 … i id|i = 1 … i same type id|i* = id|i Decryption 9 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type i C*: normal usk: type i usk: id|i* = 1*… i* id|i = 1 … i same type id|i* = id|i Decryption 10 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type i C*: 1* … i* id|i* = 1*… i* normal usk: type i usk: 1 … i id|i = 1 … i same type id|i* = id|i same type id|i* ≠ id|i Decryption 11 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type i C*: 1* i* id|i* = 1*… i* normal usk: type i usk: 1 i id|i = 1 … i same type id|i* = id|i same type id|i* ≠ id|i Decryption 12 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type i C*: 1* … i* normal usk: type i+1 usk: 1 … i same type id|i* = id|i same type id|i* ≠ id|i id|i* = 1*… i* i+1 id|i+1 = 1 … i+1 different type id|i+1* = id|i+1 Decryption 13 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type i C*: normal usk: type i+1 usk: same type id|i* = id|i id|i* = 1*… i* i+1 same type id|i* ≠ id|i id|i+1 = 1 … i+1 different type id|i+1* = id|i+1 Decryption 14 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type n C*: 1* … n* id* = 1*… n* normal usk: type n usk: 1 … n id = 1 … n id* ≠ id for all usks 15 Proof Idea of Chen and Wee Sequence of games depending on n-bit identity id = 1…n : start with real security game → change all usks and C* normal normal C*: type n C*: 1* n* id* = 1*… n* normal usk: type n usk: 1 n id = 1 … n id* ≠ id for all usks → usks useless for decryption → replace C* by random → Adversary can only guess 16 Proof Idea of Chen and Wee Game hop: type i → type i+1 Chall. C*: 1* … i* i+1 test usk*: 1* … i* usk: 1 … i i+1 test C: 1 … i Simulator embeds own challenge Simulator can test on its own i+1 Game i Decryption: i+1 Game i+1 Decryption: i+1 = 17 Proof Idea of Chen and Wee Game hop: type i → type i+1 Chall. C*: i+1 test usk*: usk: i+1 test C: Simulator embeds own challenge Simulator can test on its own i+1 Game i Decryption: i+1 Game i+1 Decryption: i+1 = 18 Proof Idea of Chen and Wee Game hop: type i → type i+1 Chall. C*: i+1 test usk*: usk: i+1 test C: Simulator embeds own challenge Simulator can test on its own i+1 Game i Decryption: i+1 Game i+1 Decryption: i+1 = 19 Proof Idea of Chen and Wee Game hop: type i → type i+1 Chall. C*: i+1 test usk*: usk: i+1 test C: Simulator embeds own challenge Simulator can test on its own i+1 Game i Decryption: i+1 Game i+1 Decryption: i+1 = 20 Our Approach Problem for multi-instance, multi-ciphertext: Guessing of id*i+1: 1. for each instance → loss = 2Ni 2. different chall. ciphertexts have different id-bits → generation is not possible Our solution: distribute randomness into 2 compartments ≈ 21 Our Approach Solution: no guessing id*i+1 = 0 Simulator gets: id*i+1 = 1 no reaction i+1 no reaction i+1 C*: 1* … i* i+1 1* … i* i+1 usk: 1 … i i+1 1 … i i+1 1 … i i+1 1 … i i+1 type i = type i+1 type i ≠ type i+1 type i ≠ type i+1 type i = type i+1 22 Our Approach Solution: no guessing id*i+1 = 0 Simulator gets: id*i+1 = 1 no reaction i+1 no reaction i+1 C*: usk: 1 1 … i … i i+1 i+1 type i = type i+1 type i ≠ type i+1 type i ≠ type i+1 type i = type i+1 23 Conclusion • no guessing • О(n) reductions: n = length of identity → loss independent of the number of ciphertexts , instances and usk-queries • first fully secure multi-instance, multi-ciphertext IBE with loss О(n) for n-bit identities under a simple assumption 24 25
© Copyright 2026 Paperzz