A play of tennis game, set, match love, 15, 30, 40, game winning also requires at least two scores more deuce, advantage-in, advantage-out A tennis automaton love A tennis automaton s 15-love love o love-15 A tennis automaton s s love 30-love 15-love o s 15-all o love-15 o love-30 A tennis automaton s s 40-love 30-love o s love 15-love s o s o 30-15 15-all o love-15 s 15-30 o love-30 o love-40 A tennis automaton s s s game-in 40-love 30-love o s love 15-love s o s o 30-15 15-all o love-15 s 15-30 o love-30 o love-40 o game-out A tennis automaton s s game-in 40-love o s 30-love s 40-15 o s love 15-love s o s o 30-15 o 15-all s 30-all o love-15 s o 15-30 o love-30 s 15-40 o love-40 o game-out A tennis automaton game-in s s s 40-love s o s 30-love s 40-15 o s love 15-love s o s o o 30-15 s o 15-all s s o o 30-all o love-15 40-30 s o 15-30 s 30-40 o love-30 s 15-40 o o love-40 o o game-out deuce A tennis automaton game-in s s s 40-love s o s 30-love s 40-15 o s love 15-love s o s o 30-15 s o 15-all s s o s 40-30 o 30-all o love-15 adv-in o s o 15-30 s 30-40 deuce o o love-30 s 15-40 adv-out o o love-40 o o game-out A tennis automaton game-in s s s 40-love s o s 30-love s 40-15 o s love 15-love s o s o 30-15 s o 15-all s s o adv-in o o 40-30 s o 15-30 s s o 30-all o love-15 s 30-40 deuce o s o love-30 s 15-40 adv-out o o love-40 o o o game-out Adding a sink state game-in s s s 40-love s o s s 30-love s o 15-love s love s o 40-15 s 15-all s s o o 40-30 o s o 30-all o love-15 adv-in o 30-15 o s,o s s o 15-30 s 30-40 deuce o sink s o love-30 o s 15-40 adv-out o love-40 o o o game-out s,o s,o A tennis automaton (cont.) game-in s s s 40-love s o s 30-love s 40-15 o s 15-love love s o 30-15 s s 15-all s o 40-30 o 30-all s o 15-30 s o s o o love-15 adv-in o o s,o s s 30-40 deuce o sink s o love-30 s 15-40 adv-out o o love-40 o o o game-out single initial state zero or more final states many labeled transitions for each state and symbol exactly one transition s,o s,o A tennis automaton (cont.) game-in s s s 40-love s o s 30-love s 40-15 o s love 15-love s o s o 30-15 s o s s o o 40-30 s o 15-30 s s o 30-all o love-15 adv-in o 15-all s,o s 30-40 deuce o sink s o love-30 s 15-40 adv-out o o love-40 o o o game-out accepted strings like sososs and soossosooo s,o s,o Question? Which string is not accepted by the tennis automaton? game-in s s s s 40-love s o 30-love s 40-15 o s 15-love s love s o 30-15 s 15-all s A. sossooososoo o B. ssssos C. ooosssss D. all are accepted s love-30 o 40-30 o 30-all s o 15-30 s o s s o o love-15 adv-in o o s,o s 30-40 15-40 deuce o sink s adv-out o o love-40 o o o game-out s,o s,o Deterministic Finite Automata 2IT70 Finite Automata and Process Theory Quartile 2, 2014-2015 Deterministic finite automaton DFA D Q, Σ, δ, q0 , F Q finite set of states Σ finite alphabet δ Q Σ Q transition function q0 > Q initial state F b Q set of final states 2 IT70 (2014) Section 2.1 8 / 19 The tennis example game-in s s s 40-love s o s 30-love s 40-15 o s love 15-love s o s o 30-15 s o s s o s o 15-30 s s o 30-40 deuce o sink s,o s o love-30 s 15-40 adv-out o o love-40 o o 2 IT70 (2014) Section 2.1 o 40-30 30-all o love-15 adv-in o 15-all s,o s o s,o game-out 9 / 19 An example DFA? game-in s s s 40-love 30-love s s 40-15 o s love 15-love s o s o s o s s o o 40-30 s o 15-30 s s o 30-all o love-15 adv-in o 30-15 15-all s,o s s o 30-40 deuce o sink s,o s o love-30 s 15-40 adv-out o o love-40 o o o s,o game-out set of states love, 15–love, love–15, . . . game-in, game-out, deuce, adv-in, adv-out alphabet s, o s o transitions love 15–love, love love–15, . . . initial state love set of final states game-in, game-out 2 IT70 (2014) Section 2.1 10 / 19 one-step and multi-step yield configuration q, w for state q and string w 2 IT70 (2014) Section 2.1 11 / 19 one-step and multi-step yield configuration q, w for state q and string w one-step yield q, w D q , w Ø 2 IT70 (2014) Section 2.1 iff § aw aw , δq, a q 11 / 19 one-step and multi-step yield configuration q, w for state q and string w one-step yield q, w D q , w Ø iff § aw aw , δq, a q multi-step yield q, w D q , w Ø 2 IT70 (2014) Section 2.1 11 / 19 one-step and multi-step yield configuration q, w for state q and string w one-step yield q, w D q , w Ø iff multi-step yield q, w D q , w Ø § aw , δq, a aw q iff n E 0 §w0 , . . . , wn > Σ §q0 , . . . , qn > Q § q, w q0 , w0 , qi 1 , wi 1 ØD qn , wn 2 IT70 (2014) Section 2.1 qi , wi , for i 1..n q , w 11 / 19 one-step and multi-step yield configuration q, w for state q and string w one-step yield q, w D q , w Ø iff multi-step yield q, w D q , w Ø § aw , δq, a aw q iff n E 0 §w0 , . . . , wn > Σ §q0 , . . . , qn > Q § q, w q0 , w0 , qi 1 , wi 1 ØD qn , wn Ø Ø qi , wi , for i q, w q0 , w0 D q1 , w1 D for suitable n, w0 , . . . , wn , q0 , . . . , qn 2 IT70 (2014) Section 2.1 1..n q , w ØD qn , wn q, w 11 / 19 Another example DFA b a, b a a q0 a q1 b q2 q3 b Ø q1 , baa Ø q0 , aa q0 , bbaa Ø q0 , baa Ø q0 , aa q1 , aa Ø q2 , ε and q1 , aaaa q0 , aab Ø q3 , ε , q0 , baab q0 , baaaabaabb Ø q3 , ε q0 , abaa 2 IT70 (2014) Section 2.1 Ø q1 , a Ø q2 , ε Ø q1 , a Ø q2 , ε Ø q2 , ε Ø q3 , ε , and 12 / 19 Language accepted by DFA L D 2 IT70 (2014) Section 2.1 w > Σ S § q > F q0 , w ØD q, ε 13 / 19 Language accepted by DFA L D w > Σ S § q > F q0 , w ØD b a a q0 q1 a q2 q, ε a, b b q3 b accepted language w > a, b S w has a substring aab 2 IT70 (2014) Section 2.1 13 / 19 Question Which language is the language accepted by this automaton? a ee oe a b b b b a eo oo a A. a, b, aba, bab B. C. D. abb n S n E 0 8 b aan S n E 0 w > a, b S #a w is odd w > a, b S #a w #b w is odd 2 IT70 (2014) Section 2.1 14 / 19 Path sets DFA D, state q pathset D q 2 IT70 (2014) Section 2.1 w > Σ S q 0 , w ØD q, ε 15 / 19 Path sets DFA D, state q pathset D q w > Σ S q 0 , w ØD q, ε a even odd a pathset D even pathset D odd 2 IT70 (2014) Section 2.1 an S n E 0, n even n a S n E 0, n odd 15 / 19 Yet another example DFA 0, 1 0 1 q0 q1 1 q2 0 L state w > 0, 1 S w has no substring 11 pathset regular expressions q0 no substring 11 and no last symbol 1 0 1 0 q1 no substring 11 and last symbol 1 0 1 0 1 q2 substring 11 0 1 11 0 1 regular expressions will be explained later 2 IT70 (2014) Section 2.1 16 / 19 Another example DFA (rev.) a ee state pathset oe a b b b b a eo oo a L 2 IT70 (2014) Section 2.1 D ee w S #a w even, #b w even oe w S #a w odd, #b w even eo w S #a w even, #b w odd oo w S #a w odd, #b w odd pathset D eo 8 pathset D oe w S #a w odd, #b w even 8 w S #a w even, #b w odd w S #a w #b w odd w S S w S odd 17 / 19 Language accepted by DFA (revisited) b a, b a a q0 q1 a q2 b q3 b state pathset q0 w S no substring aab, not ending in a q1 w S no substring aab, ending in a, but not in aa q2 w S no substring aab, ending in aa q3 w S substring aab accepted language w > a, b S w has a substring aab 2 IT70 (2014) Section 2.1 18 / 19 Question Why does the following not represent a DFA? 1 q0 2 0 q1 3 0 q2 A. The alphabet has more than 2 letters. B. It accepts the empty string ε. C. It has a transition relation, but not a transition function. D. It does represent a DFA. 2 IT70 (2014) Section 2.1 19 / 19
© Copyright 2026 Paperzz