Supporting Information Figures S1-S8, Tables S1-S5, and Methods S1 Fig. S1 Scanning electron microscopy of the adaxial and abaxial surfaces of nal2/3 leaves. (a-d) Adaxial (a, c) and abaxial (b, d) surfaces of the wild-type (WT) and nal2/3 leaves in the middle region of the fully expanded third leaf blade. BC, bulliform cell region; LV, large vein; SV, small vein. Bars: 100 m. 1 Fig. S2 The shoot apex region of the nal2/3 mutants displayed reduced size of the shoot apical meristem (SAM) and defective marginal structure in leaf primordia. Sequential transverse sections through the shoot apex of 1-month-old seedlings were examined. Bars: 100 m. (a-e) 35 m (a), 25 m (b), 15 m (c) above the section (e) containing SAM in wild-type (WT). (d) Magnified transverse sections in (c). (f-j) 35 m (f), 25 m (g), 15 m (h) above the section (j) containing SAM in nal2/3. (i) Magnified transverse sections in (h). L4, fourth leaf; L5, fifth leaf; L6, sixth leaf; L7, seventh leaf; S, shoot apical meristem; asterisks, the margins of overlapped leaves; arrowheads, the margin of the non-overlapped leaves; dashed lines, the boundaries of the leaves. 2 Fig. S3 nal2/3 displayed normal morphology in pistil and stamen development. Pistil and stamen developments were observed in wild-type (WT) and nal2/3 plants when spikelets opened after heading. L, lemma; Lo, lodicule; P, palea; Pi, pistil; S, stamen; Gl, glume. Bar: 2 mm. 3 Fig. S4 nal2/3 showed a significantly increased number of tillers at both active and maximum tillering stages. (a, b) The number of tillers of wild-type (WT) (a) and nal2/3 (b) plants 30 days after germination. Asterisks represent tillers. Bars: 1 cm. (c) Tiller number of WT and nal2/3 at the active tillering stage (30-days after germination) and maximum tillering stage (90-days after germination). Values are shown as mean standard deviation obtained from 20 plants. Asterisks indicate statistically significant differences compared with WT as determined by Student’s t-test (***, P < 0.001). 4 Fig. S5 Characterization of nal2 and nal3 mutant proteins and OsWOX3A homologs. (a) Alignment of the mutated amino acids in nal2 and nal3. Black boxes show the changed amino acids in nal2 or nal3. (b) ClustalW amino acid sequence alignments of OsWOX3A with its homologs in maize and Arabidopsis. NS1 and NS2 are narrow sheath1 and narrow sheath2 in maize, and PRS is PRESSED FLOWER in Arabidopsis. Double and single lines represent a WOX3 homeodomain at the N-terminus and a WUSCHEL-box domain at the C-terminus, respectively. Note that OsWOX3A has approximately 40 to 60 fewer amino acids than NS and PRS, mainly in the middle region. 5 Fig. S6 Phylogenic tree of the WOX families. Phylogenic tree was constructed by the neighbor-joining method, using the MEGA 5.1 software. Numbers at the branching points represent bootstrap values from 1,000 replicates. GenBank accession numbers are shown in Table S5. Abbreviations are Arabidopsis thaliana (At), Brachypodium distachyon (Bd), Oryza sativa (Os), and Zea mays (Zm). 6 Fig. S7 Complementation of nal2/3 by OsWOX3A. (a) Leaf phenotype of transgenic lines containing the genomic OsWOX3A fragment. The genomic OsWOX3A (2141-bp 5’-upstream, 612-bp ORF and 1078 bp 3’-downstream) was transformed into nal2/3 calli, and 12 transgenic plants were obtained. All transgenic lines rescued several defects in nal2/3. WT, wild-type; MR, midrib; LV, large vein; SV, small vein. (b) Verification of true transformants. Genomic DNAs were extracted, and a 443-bp PCR product for the OsWOX3A inside the T-DNA border regions of pC1300intC was amplified. M, DNA marker; W, genomic DNA of wild-type as negative control; E, empty plasmid of pC1300intC as negative control; V, recombinant plasmid of pC1300intC-OsWOX3A as positive control; 1-12, genomic DNA of twelve transgenic plants in nal2/3 background. Bar: (a) 1 mm. 7 Fig. S8 Endogenous free-IAA concentrations in the whole plants of 2-week-old wild-type (WT) and nal2/3 using IAA ELISA analysis. Mean and SD values were obtained from three replicates. n.s., no significant difference. 8 Table S1 Primers used in this study A. Physical mapping markers Locus Contig Location Forward primer (5′→3′) Reverse primer (5′→3′) STS-1 AL513003 10.5 kb TGCAGCTGATTCCGTTCCTC GCTCTCCAATGTGGCTGCATG STS-2 BX000505 113 kb CCGCGATCGGATCTACCTATC TCAGCACTGACGAGTCGAGC STS-3 BX000500 13 kb TGATGYGGTATGTCACACGGAC CACATGGACCGATGGACGTG STS-4 BX000494 61.4 kb TTTGTGTGTCGACTGATCGAAC CACAACGACATCCCTTAATCCC STS-5 BX000494 28 kb TGCTACGGTTGAACTGAAATTG TTTATGCACCGCCTATCTAGG STS-6 BX000496 101 kb TGCTTATCCACATTGTCACATC ATGGGACATACGGTTGCTG RM19 AL928755 122.9kb CAAAAACAGAGCAGATGAC CTCAAGATGGACGCCAAGA RM167 AC135794 130.1kb GATCCAGCGTGAGGAACACGT AGTCCGACCACAAGGTGCGTTGTC RM229 AC150702 136.8kb CACTCACACGAACGACTGAC CGCAGGTTCTTGTGAAATGT RM247 AL713906 90.7kb TAGTGCCGATCGATGTAACG CATATGGTTTTGACAAAGCG RM277 AL845344 138.5kb CGGTCAAATCATCACCTGAC CAAGGCTTGCAAGGGAAG RM286 BX000497 164.1kb GGCTTCATCTTTGGCGAC CCGGATTCACGAGATAAACTC B. Gene-specific primers used for qRT-PCR Gene Forward primer (5'→3') Reverse primer (5'→3') ARF1 GCACTCCTTCTGCAAGATCC GGCCCCTGTAGATGTGCTTA ARF2 GTCCGTTCTGGCTCTCAATC GGGAAGGCTGTGGAGATACA ARF3 TCTCGTCCCTCTACGTGCTT CCGATTACAACGGGAGCTTA ARF4 TTCCTCCGTTTCAAGGAATG AGCTGTGGTACCCCTGTTTG ARF5 AAGGATGGGAAAGCTTGGTT GAAATCCCATCTGGCTTCAA YABBY1 TGGTGAATGTGCCAAACAAT GCTTGGTGAAAAGGAGCAAG YABBY2 AATTTTCGCGGTCAGTGTTC AGTTTTCGCGGAAGCTCATA YABBY3 ATCAAGGACGAAATCCAACG GGCATCAGTCCAAAGTGGAT YABBY4 ATCACATCAAAGGGGACCAA CGAGTACGCAATGGCCTTAT YABBY5 GAGCCTAATGACCGAACAGG CTCTGCCGCTTCTCTGAAGT YABBY6 TCTGTTCATCACTGGCTTCG CGTGTTGCAGAAGTTGCAGT YABBY7 GGAGACGATAGGGAGGGAAG TGCTTGTTTGTGGGTGATGT YUCCA1 ACCTCATCCTCGGTAACACG TCTCCTTCACTGCTCCCACT YUCCA2 GCCTGAAGGAGAAGGGAATC AGCTCTCCAGGTAAGCCACA YUCCA3 GTTGTGCTGCCAGAGATTGA CCCTGGGCAAGATGTGTACT YUCCA4 GGATGGCAGCACTGAAGAAT AGAGACCACGCCTTGAGAAA YUCCA5 ACCTCCTACGACGCCGCCATGATC CTCCCAACACAGCGACGACAGAAC YUCCA6 GTCATACTGGCCACCGGATA CAGCATCTGAGGAGACACCA YUCCA7 AAGGACGGGTACCCAAAGAC TCTTCTTGGTTGGCTTCGTC YUCCA8/NAL7 GTGGTGTGCATGTTCTACCG TGGGCCTCTTGAGACCATAC YUCCA9 AAGAGTGATGACGGGCTGAT ATTGTTGTGGGTAGGCTTGC NAL1 AGCTGACGGTGCATTTATCC CCATCACAGTCCCAGTTGTG NRL1 AAGAGGGACTTCCTCAAGAACAAG TCGTACTCGCGCTTCACCTT 9 PIN1 AGTCAAGGGGAGGACAGGAT TCCGTTTTACAAGGGTCAGC PIN1b TTCTGCACATTGCCATTGTT AATGTGATGGGGAGAGCAAT PIN1c ATCGTGCAGGCAGCGTTGCC ATGTAGTACACCAGCGTGAT PIN2 TGTCAGATGCAGGGCTAGGAA TGCCACAAGAAATGATCTTTGG PIN3 TTGTTCAGGCGGCTCTACCA AAGGAAATTGCTTACGCTGT Ub GTCTGATCTTCGCTGGCAAGCAGC GCATACTGCTGTCCCACAGGAAACTG C. Primers for transformation verification of OsWOX3A genomic DNA in nal2/3 mutant Product Primer (5'→3') TC1 ACGACAGGTTTCCCGACTGG TC2 CCAATGCACTGAAGGATGTTG D. Primers for transcriptional activation analysis in yeast GAL4 system Product Primer (5'→3') Y-F GAATTCATGCCTCAGACCCCTTCG Y-R333 GGATCCGTGGTGTAGCTGCATCAC Y-F316 GAATTCGTGATGCAGCTACACCAC Y-R GGATCCTTAATTGGTGGAGGTGGAG E. Primers for OsWOX3 promoter genomic DNA for OsWOX3Apro:GUS construction Product Primer (5'→3') WOX3Apro:GUS-F AGATCCACTCATCAGTACCTTTG WOX3Apro:GUS-R TCTCTAAAGTCTTCGATTCAGAAC F. Primers for OsWOX3 cDNA for OsWOX3A-GFP construction Product Primer (5'→3') ORF1 TCTAGAATGCCTCAGACCCCTTCGAC ORF2 GGATCCATTGGTGGAGGTGGAGC 10 Table S2 Morphological characteristics of nal2/3 Parameter Wild-type nal2/3 Leaf sheath length (cm) 25.7 4.5 (10) 23.1 2.3 (10) n.s. Leaf blade length (cm) 40.4 1.8 (10) 38.7 3.6 (10) n.s. Leaf blade width (mm) 10.1 1.5 (10) 6.1 0.3 (10) *** Numbers of LVs 5.7 0.4 (10) 4.6 0.8 (10) ** Number of SVs between two adjacent LVs 4.7 0.3 (10) 2.7 0.6 (10) *** Major diameter of main stem (mm) 5.65 0.21 (10) 3.80 0.28 (10) *** Minor diameter of main stem (mm) 3.15 0.07 (10) 2.15 0.07 (10) *** Spikelet length (mm) 7.4 0.1 (20) 7.5 0.4 (20) *** Spikelet width (mm) 3.5 0.1 (20) 3.5 0.3 (20) *** Spikelet thickness (mm) 2.3 0.1 (20) 2.2 0.3 (20) *** Extended width of lemma (mm)a 3.90 0.29 (4) 2.25 0.13 (4) *** 2.44 0.09 (4) 1.24 0.09 (4) *** 0.65 0.06 (8) 0.44 0.07 (8) *** Grain length (mm) 5.3 0.1 (20) 5.8 0.3 (20) *** Grain width (mm) 3.0 0.1 (20) 2.2 0.4 (20) ** Grain thickness (mm) 2.1 0.0 (20) 1.7 0.1 (20) *** Lateral root length (mm) b 8.89 2.69 (10) 8.14 3.54 (10) n.s. Extended width of palea (mm) a Length between veins of lemma (mm) a Means and standard deviations were obtained from the longest third leaf blades at heading stage grown in natural conditions and fully developed spikelets and grains after harvest (sampling numbers in parentheses). Leaf widths and the number of large veins and small veins were measured in the broadest middle region. a Lemma and palea widths were measured in the transverse sections of middle region of young spikelets immediately after heading. b Lateral root length on the primary root (10 plants) was measured Asterisks indicate significant difference determined by Student’s t-test (**, P<0.01; ***, P<0.001). n.s. represents no significant difference. 11 Table S3 Cell size and cell number in the marginal region of lemma of wild-type and nal2/3 plants Parameter Wild-type nal2/3 Cell size (mm2) 40.98 5.75 (n=4) 12.91 3.33 (n=4)*** Cell number 149.25 15.50 (n=4) 41.50 5.32 (n=4)*** Means and standard deviations were obtained from the transverse sections of middle region of young stage sample. At least 134 cells of wild-type and 33 cells for nal2/3 were measured per lemma sample. Asterisks indicate significant difference determined by Student’s t-test (***, P<0.001). Table S4 Agronomic traits in nal2/3 Parameter Wild-type nal2/3 Culm length (cm) 74.3 ± 3.1 (10) 70.7 ± 2.2 (10) ** Panicle length (cm) 22.3 ± 1.9 (10) 19.1 ± 1.7 (10) ** Number of panicles/plant 17.9 ± 1.9 (10) 12.9 ± 1.9 (10) ** Number of spikelets/panicle 117.1 ± 8.3 (10) 83.7 ± 9.3 (10) *** Fertility (%) 92.0 ± 2.5 (10) 54.9 ± 9.2 (10) *** 1000 grain weight (g) 23.7 ± 2.1 (10) 19.1 ± 2.0 (10) ** Grain yield/plant (g) 45.8 ± 6.8 (10) 13.9 ± 3.9 (10) *** Number of tillers 22.5 ± 3.1 (10) 31.1 ± 2.8 (10) *** Means and standard deviations were obtained from field-grown plants or fully developed grains (sampling numbers in parentheses). Asterisks indicate significant difference determined by Student’s t-test (**, P<0.01; ***, P<0.001). 12 Table S5 Accession numbers of WOX proteins in the phylogenic tree (Fig. S6) Name of Protein Accession No. Name of Protein Accession No. AtWOX1 AAP37133 OsWOX3B/DEP CAM32354 AtWOX2 AAP37131 OsWOX4 CAJ84142 AtWOX3/PRS AAP37135 OsWOX5 NP_915421 AtWOX4 AAP37134 OsWOX6 ABF95709 AtWOX5 AAP37136 OsWOX7 NP_916815 AtWOX6 AAP37137 OsWOX8 NP_915983 AtWOX7 NP_196196 QHB BAB84412 AtWOX8 AAP37138 OsWOX10 BAD05582 AtWOX9 AAP37139 OsWOX11 BAF22586 AtWOX10 NP_173494 ZmNS1 Q70UV1 AtWOX11 AAP37140 ZmNS2 Q6S3I3 AtWOX12 AAP37141 ZmWOX2A CAJ84159 AtWOX13 AAP37142 ZmWOX2B CAJ84170 AtWOX14 NP_173493 ZmWOX3A CAM32346 BdNS CAM32355 ZmWOX3B CAM33396 BdWOX2 CAM32356 ZmWOX4 CAJ84160 BdWOX3 CAM32357 ZmWOX5A CAJ84161 BdWOX4 CAM32358 ZmWOX5B CAJ84162 BdWOX5 CAM32359 ZmWOX9A CAJ84163 BdWOX9 CAM32360 ZmWOX9B CAJ84164 BdWOX11/12A CAM32363 ZmWOX9C CAJ84165 BdWOX11/12B CAM32364 ZmWOX11/12A CAJ84167 BdWOX13 CAM32361 ZmWOX11/12B CAJ84167 OsWOX1 CAE04846 ZmWOX13A CAJ84168 OsWOX2 Q5W7C3 ZmWOX13B CAJ84169 OsWOX3A/NS BAE48302 13 Methods S1. Quantification of endogenous IAA To quantify endogenous IAA, 1 g of plant tissues were ground in liquid nitrogen and crude IAA was extracted overnight at -20°C in 10 ml of 80 % methanol. IAA was purified by acidifying the samples to pH 2.7 with 1 M HCl, applying them at a rate of 1 ml/min to a 500 mg C18 Bond Elute SPE column (Agilent Technologies) conditioned with 1 ml methanol and 1 ml 1% acetic acid, washing with 1 ml 10% methanol in 1% acetic acid, and then eluting with 1 ml methanol. After evaporation to dryness, each sample was methylated by adding 0.2 ml 2-propanol, 1 ml methyl chloride, and 5 l trimethylsilyl-diazomethane in hexane and then incubated for 30 min at room temperature. Five μl of 2 M acetic acid in hexane was added to destroy excessive diazomethane in each sample, which was subsequently evaporated to dryness. After trimethylation, IAA was quantified using IAA ELISA quantitation kit (Agrisera, Sweden) according to the manufacturer’s instructions. 14
© Copyright 2026 Paperzz