Kuramoto model of synchronization:equilibrium and non equilibrium aspects Stefano Ruffo Dipartimento di Fisica e Astronomia and CSDC, Università degli Studi di Firenze and INFN, Italy Strolling on Chaos, Turbulence and Statistical Mechanics, Angelo Vulpiani 60th Anniversary, sept. 22-24, Rome Center for the Study of Complex Dynamics University of Florence Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.1/27 Angelo 1989 Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.2/27 FPU Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.3/27 Transition to equipartition in FPU Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.4/27 Computers Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.5/27 References S. Gupta, M. Potters and S. Ruffo, One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes, Phys. Rev. E, 85, 066201 (2012). S. Gupta, A. Campa and S. Ruffo, Overdamped dynamics of long-range systems on a one-dimensional lattice: Dominance of the mean-field mode and phase transition, Phys. Rev. E, 86, 061130 (2012). S. Gupta, A. Campa and S. Ruffo, Nonequilibrium first-order transition in coupled oscillator systems with inertia and noise, Phys. Rev. E, 89, 022123 (2014) S. Gupta, A. Campa and S. Ruffo, Kuramoto model of synchronization: equilibrium and nonequilibrium aspects, J. Stat. Mech.: Theory and Exp., R08001 (2014) Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.6/27 Plan Kuramoto and Sakaguchi models Equilibrium vs. non equilibrium First-order phase transition Complete phase diagram Linear stability analysis α-Kuramoto Zero-mode dominance Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.7/27 Synchronization Spontaneous synchronization: Coordination of events to operate a system in unison, in the absence of any ordering field Flashing fireflies Synchronized firing of cardiac pacemaker cells Phase synchronization in electrical power distribution networks Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.8/27 The Kuramoto model A framework to study spontaneous synchronization: N globally coupled oscillators with distributed natural frequencies N dθi K̃ X = ωi + sin(θj − θi ) dt N j=1 K̃ coupling constant, ωi quenched random variables with distribution g(ω) P Order parameter, fraction of phase-locked oscillators: r = |1/N j exp(iθj )| High K̃: Synchronized phase , r > 0 Low K̃: Incoherent phase, r = 0. For unimodal g(ω) continuous transition on tuning K̃. r i-th oscillator 1 θi 0 ec K e K Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.9/27 The Kuramoto-Sakaguchi model r=0 r 6= 0 0 Ke Kec Stochastic fluctuations of the ωi in time N dθi K̃ X = ωi + sin(θj − θi ) + ηi (t) dt N j=1 < ηi (t) >= 0 , < ηi (t)ηj (t′ ) >= 2Dδij δ(t − t′ ) D Kec(D) r=0 0 r 6= 0 Ke Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.10/27 2nd order dynamics Two dynamical variables: θi (Phase); vi (Angular velocity) dθi = vi dt N dvi K X m = −γvi + ωi + sin(θj − θi ) + ηi (t) dt N j=1 where m is the inertia and γ the friction constant. Motivation: An adaptive frequency can explain the slower approach to synchronization observed in a particular firefly (the Pteropyx mallacae) Ermentrout (1991) Phase dynamics in electric power distribution networks in the mean-field limit Filatrella, Nielsen and Pedersen (2008), Rohden, Sorge, Timme and Witthaut (2012), Olmi and Torcini (2014) Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.11/27 Previous studies No noise: Simulations for a Lorentzian g(ω) show a first-order synchronization transition Tanaka, Lichtenberg and Oishi (1997) Analysis in the continuum limit, based on a suitable Fokker-Planck equation analysis in the limit N → ∞ for a Lorentzian g(ω): either larger inertia or larger ω spread makes the system harder to synchronize Acebron and Spigler (1998); Acebron, Bonilla and Spigler (2000) HOWEVER, THE COMPLETE PHASE DIAGRAM HAS NOT BEEN ADDRESSED Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.12/27 Rescaling One can analyze the model in the reduced parameter space (T, σ, m) dθi = vi dt N 1 1 X dvi = − √ vi + σωi + sin(θj − θi ) + ηi (t) dt m N j=1 where now: g(ω) has zero average and unit width < ηi (t)ηj (t′ ) >= 2T √ δ δ(t m ij − t′ ) Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.13/27 Equilibrium and nonequilibrium The role of σ σ = 0, ⇒ no external drive ⇒ detailed balance ⇒ equilibrium stationary state σ > 0 ⇒ non equilibrium stationary state Continuous transition lines m = T = 0, σ > 0, Kuramoto m = 0, T > 0, σ > 0, Sakaguchi, continuous transition, critical line σ = 0 Hamiltonian system + heat-bath (Brownian Mean Field model), continuous transition, critical line Chavanis (2013) σ Kuramoto model critical point r=0 Critical line r 6= 0 0 r=0 BM Fc r 6= 0 riti cal line T m Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.14/27 Phase diagram-I Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.15/27 Phase diagram-II (b) coh 0.5 σ inc σ σ 0.25 0 T 0.2 0.4 50 25 m 0 Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.16/27 Hysteresis Order parameter T=0.25,N=500 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 m=1 m=100 0 σ inc 0.25 Adiabatically tuned σ 0.5 σ coh Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.17/27 Bistability For m = 20, T = 0.25, N = 100, and a Gaussian g(ω) with zero mean and unit width, (left) shows, at σ = 0.195, r vs. time in the stationary state, while (right) shows the distribution P (r) at several σ’s around 0.195. Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.18/27 N → ∞ continuum limit Single-particle distibution f (θ, v, ω, t): Fraction of oscillators at time t and for each ω which have phase θ and angular velocity v (Periodic in θ and normalized). Evolution by Kramers equation ” T ∂2f ∂f ∂f ∂ “ v = −v + , √ − σω − r sin(ψ − θ) f + √ ∂t ∂θ ∂v m m ∂v 2 with self-consistent order parameter r exp(iψ) = ZZZ dθdvdωg(ω) exp(iθ)f (θ, v, ω, t) Homogeneous (r = 0) solution f inc √ „ « (v − σω m)2 1 1 √ exp − = 2π 2πT 2T Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.19/27 Linear stability results Stability analysis gives σ inc : f (θ, v, ω, t) = f inc (θ, v, ω) + eλt δf (θ, v, ω) ∞ X (−mT )p (1 + 2T = emT p=0 p mT ) p! +∞ Z −∞ g(ω)dω 1+ p mT + i σω + T λ √ T m . Acebron, Bonilla and Spigler (2000) The equation for λ has at most one solution with a positive real part and, when the solution exists, it is necessarily real. Neutral stability ⇒ λ = 0 gives the stability surface σ inc (m, T ). Similarly, one can define σ coh (m, T ). The two surfaces enclose the first-order transition surface σc (m, T ). Taking proper limits, the surface σ inc (m, T ) meets the critical lines on the (T, σ) and (m, T ) planes. The intersection of the surface with the (m, σ) plane gives an implicit formula for inc (m, σ). σnoiseless Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.20/27 Landau free energy σ < σ inc σ = σ inc (i) σ inc < σ < σc (iii) (ii) F (r) σ = σc (iv) 0 r 1 σc < σ < σ (v) 11111 00000 00000 11111 coh σ > σ coh σ = σ coh (vi) (vii) Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.21/27 Mean-field metastability ∆ Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.22/27 A non equilibrium perspective Kuramoto model as an overdamped limit of a long-range interacting system. General dynamics: (1) External drive, (2) Quenched vs. annealed randomness. No quenched randomness ⇒ Equilibrium Prob. distr. ∼ exp(−β(K.E. + P.E.)), product measure Phase transition given by P.E. same for underdamped and overdamped dynamics Quenched randomness ⇒ Non equilibrium stationary state Prob. distr. 6= exp(−β(K.E. + P.E.)), not product measure Dynamics matters: Phase transitions different for underdamped and overdamped dynamics Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.23/27 α-Kuramoto K dθi = ωi + e dt N N X j=1,j6=i sin(θj − θi ) |xj − xi |α ωi is a quenched random variable with distribution g(ω) In the continuum limit, the local density ρ(θ; ω, x, t) satisfies the continuity equation ∂ρ ∂ “ ∂θ ” =− ρ ∂t ∂θ ∂t ∂θ(ω, x, t) = ω + κ(α)K ∂t Z ′ dθ dω ′ ′ ′ sin(θ − θ) ′ ′ ′ ′ dx ρ(θ ; ω , x , t)g(ω ) |x′ − x|α Linear stability analysis of the homogeneous state ρ(θ; ω, x, t) = 1 + δρ(θ; ω, x, t) 2π Dispersion relation ck (α)K 1− 2 Z ∞ −∞ dω g(ω) =0 (λk ± iω) Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.24/27 Stability of the incoherent state If g(ω) is symmetric around the mean and non increasing then λk is either real positive or zero. The dispersion relation rewrites 1 − ck (α)K Z ∞ dω 0 λk g(ω) = 0 2 2 λk + ω The limit λk → 0 gives the critical couplings (k) Kc (0) Kc = 2 ck (α)πg(0) (1) < Kc (2) < Kc < .... and the growth rates λk 2K (k) πg(0)Kc Z 0 ∞ hλ i K λ2 /2 λk k k e Erfc g(ω) = dω 2 = 1. √ (k) λk + ω 2 2 Kc for Gaussian g(ω). Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.25/27 Zero-mode dominance 1 r0(t) r1(t) r2(t) r3(t) 0.1 0.01 0.001 0.0001 1e-05 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Time t (0) α = 0.5 , K = 15 , Kc (1) ≈ 1.59577 , Kc (2) ≈ 4.26696 , Kc (3) ≈ 6.53664 , Kc ≈ 7.71516, . . . , so that the Fourier modes 0, 1, 2, 3 are all linearly unstable. Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.26/27 AU GU RI AN GELO Kuramoto model of synchronization:equilibrium and non equilibrium aspects – p.27/27
© Copyright 2026 Paperzz