Homework4 Solutions Problem 1: Given the following signal: ๐ฅ[๐] = 1 + sin ( 2๐ 2๐ 4๐ ๐ ) ๐ + 3 sin ( ) ๐ + cos ( ๐ + ) ๐ ๐ ๐ 2 This signal is periodic with fundamental period N and fundamental frequency ๐0 = 2๐ ๐ Define Fourier series of this signal, Fourier series coefficients of this signal and sketch the plots for Real and Imaginary Parts of Fourier Series Coefficients and for Magnitude and Phase of the same coefficients. Solution: a) Fourier Series: 1 1 Using sin ๐0 ๐ = 2๐ (๐ ๐๐0 ๐ โ ๐ โ๐๐0 ๐ ) and cos ๐0 ๐ = 2 (๐ ๐๐0 ๐ + ๐ โ๐๐0 ๐ ) ๐ฅ[๐] = 1 + 2๐ 2๐ 2๐ 1 ๐(2๐)๐ 3 (๐ ๐ โ ๐ โ๐( ๐ )๐ ) + (๐ ๐( ๐ )๐ โ ๐ โ๐( ๐ )๐ ) 2๐ 2๐ 4๐๐ ๐ 1 ๐(4๐๐+๐) โ๐( + ) ๐ 2 ) + (๐ ๐ 2 + ๐ 2 3 1 ๐(2๐)๐ 3 1 โ๐(2๐)๐ 1 ๐๐ ๐2(2๐)๐ ๐ ๐ ๐ฅ[๐] = 1 + ( + ) ๐ + ( โ )๐ + ( ๐ 2) ๐ ๐ 2 2๐ 2 2๐ 2 2๐ ๐ 1 โ๐2( )๐ ๐ + ( ๐ โ๐ 2 ) ๐ 2 b) Fourier series coefficients: ๐0 = 1 ๐1 = 3 1 3 1 + = โ ๐ 2 2๐ 2 2 ๐2 = 1 ๐ 2 ๐๐ = 0 ๐โ1 = 1 ๐โ2 = โ ๐ 2 ๐๐๐ 1 ๐3๐+2 = ๐ 2 ๐ โ โ2, โ1,0,1,2 1 ๐โ2โ๐ = โ ๐ 2 3 1 3 1 โ = + ๐ 2 2๐ 2 2 c) |๐๐ | Magnitude: |๐0 | = 0 3 1 โ10 |๐1 | = โ( )2 + ( )2 = 2 2 2 3 1 โ10 |๐โ1 | = โ( )2 + ( )2 = 2 2 2 1 1 |๐2 | = โ( )2 = 2 2 |๐โ2 | = |๐๐ | = 0 ๐๐๐ ๐ โ โ2, โ1, 0, 1, 2 d) โฎ ๐๐ โ Phase โฎ ๐0 = 0 1 โ 1 โฎ ๐1 = arctan ( 2 ) = โ๐๐๐๐ก๐๐ ( ) 3 3 2 โฎ ๐โ1 1 1 = arctan ( 2 ) = ๐๐๐๐ก๐๐ ( ) 3 3 2 1 ๐ โฎ ๐2 = arctan ( 2 ) = ๐๐๐๐ก๐๐โ = 0 2 โฎ ๐โ2 = โ๐๐๐๐ก๐๐โ = โ โฎ ๐๐ = 0 ๐๐๐ 1 2 ๐ โ โ2, โ1, 0, 1, 2 1 2 Problem 2: Given the following signal ๐ ๐ฅ(๐ก) = 1 + ๐ ๐๐๐0 ๐ก + 2๐๐๐ ๐0 ๐ก + cos(2๐0 ๐ก + ) 4 This signal is periodic with fundamental frequency ๐0 . Determine the Fourier series of this signal, Fourier series coefficients of this signal and sketch the plots for Real and Imaginary Parts of Fourier series coefficients and for magnitude and phase of the same coefficients. Solution: a) Fourier Series: 1 1 Using sin ๐0 ๐ก = 2๐ (๐ ๐๐0 ๐ก โ ๐ โ๐๐0 ๐ก ) and cos ๐0 ๐ก = 2 (๐ ๐๐0 ๐ก + ๐ โ๐๐0 ๐ก ) ๐ ๐ 1 ๐๐ ๐ก 1 [๐ 0 โ ๐ โ๐๐0 ๐ก ] + [๐ ๐๐0 ๐ก + ๐ โ๐๐0 ๐ก ] + [๐ ๐(2๐0 ๐ก+ 2 ) + ๐ โ๐(2๐0 ๐ก+ 2 ) ] 2๐ 2 1 1 1 ๐ ๐ฅ(๐ก) = 1 + (1 + ) ๐ ๐๐0 ๐ก + (1 โ ) ๐ โ๐๐0 ๐ก + ( ๐ ๐( 4 ) ) ๐ ๐2๐0 ๐ก 2๐ 2๐ 2 ๐ 1 + ( ๐ โ๐( 4 ) ) ๐ โ๐2๐0 ๐ก 2 ๐ฅ(๐ก) = 1 + b) Fourier series coefficients: ๐0 = 1 ๐1 = 1 + ๐2 = 1 1 =1โ ๐ 2๐ 2 ๐โ1 = 1 โ 1 ๐(๐) โ2 โ2 ๐ 4 = + ๐ 2 4 4 ๐๐ = 0 ๐๐๐ 1 1 =1+ ๐ 2๐ 2 ๐ 1 โ2 โ2 ๐โ2 = โ ๐ โ๐( 4 ) = โ ๐ 2 4 4 |๐| > 2 c) |๐๐ | Magnitude: |๐0 | = 1 1 โ5 |๐1 | = โ(1)2 + (โ )2 = 2 2 1 โ2 โ2 |๐2 | = โ( )2 + ( )2 = 4 4 2 1 = 2 |๐๐ | = 0 d) ๐๐๐ โฎ ๐๐ โ Phase โฎ ๐0 = 0 |๐| > 2 1 โ5 |๐โ1 | = โ(1)2 + ( )2 = 2 2 |๐โ2 | = โ( โ2 2 โ2 ) + (โ )2 4 4 1 1 โฎ ๐1 = arctan ( 2) = โ๐๐๐๐ก๐๐ ( ) 1 2 โ โฎ ๐โ1 1 1 = arctan ( 2 ) = ๐๐๐๐ก๐๐ ( ) 1 2 โ2 โฎ ๐2 = arctan ( 4 ) = ๐๐๐๐ก๐๐1 โ2 4 โฎ ๐โ2 โ2 = arctan ( 4 ) = โ๐๐๐๐ก๐๐1 โ2 4 โฎ ๐๐ = 0 , โ ๐๐๐ |๐| > 2 Problem 3: Given the following signal 2๐ 5๐ ๐ฅ(๐ก) = 2 + cos ( ๐ก) + 4 sin ( ๐ก) 3 3 Determine the fundamental frequency ๐0 and Fourier series coefficients ๐๐ such that โ ๐ฅ(๐ก) = โ ๐๐ ๐ ๐๐๐0 ๐ก ๐=โโ Solution: a) Fourier Series: 1 1 Using sin ๐0 ๐ก = 2๐ (๐ ๐๐0 ๐ก โ ๐ โ๐๐0 ๐ก ) and cos ๐0 ๐ก = 2 (๐ ๐๐0 ๐ก + ๐ โ๐๐0 ๐ก ) 2๐ 2๐ 5๐ 5๐ 1 4 ๐ฅ(๐ก) = 2 + (๐ ๐( 3 )๐ก + ๐ โ๐( 3 )๐ก ) + (๐ ๐( 3 )๐ก โ ๐ โ๐( 3 )๐ก ) 2 2๐ ๐ฅ(๐ก) = 2 + 2๐ 2๐ 1 ๐(2๐)๐ก 1 โ๐(2๐)๐ก 3 ๐ 3 + ๐ โ 2๐๐ ๐5( 6 )๐ก + 2๐๐ โ๐5( 6 )๐ก 2 2 b) Fundamental Frequency ๐0 = 2๐ ๐ = 6 6 c) Fourier coefficients The non-zero Fourier coefficients of ๐ฅ(๐ก) are: 1 โ ๐0 = 2; ๐2 = ๐โ2 = ; ๐5 = ๐โ5 = โ2๐ 2 Problem 4: ๐๐ ๐๐ โ โ Given ๐0 = 2; ๐2 = ๐โ2 = 2๐ 6 ; ๐4 = ๐โ4 = ๐ 3 of a discrete-time periodic signal ๐ฅ[๐] which is real valued and has a fundamental period ๐ = 5. Express ๐ฅ[๐]in the form โ ๐ฅ[๐] = ๐ด0 + โ ๐ด๐ sin(๐๐ ๐ + ๐๐ ) ๐=1 Solution: Using Fourier Series Synthesis Equation 2๐ 2๐ 2๐ 2๐ ๐ฅ[๐] = ๐0 + ๐2 ๐ ๐2( ๐ )๐ + ๐โ2 ๐ โ๐2( ๐ )๐ + ๐4 ๐ ๐4( ๐ )๐ + ๐โ4 ๐ โ๐4( ๐ )๐ ๐ 4๐ ๐ 4๐ ๐ 8๐ ๐ 8๐ ๐ฅ[๐] = 2 + 2๐ ๐( 6 ) ๐ ๐( 5 )๐ + 2๐ โ๐(6 ) ๐ โ๐( 5 )๐ + ๐ ๐ 3 ๐ ๐( 5 )๐ + ๐ โ๐ 3 ๐ โ๐( 5 )๐ 4๐ ๐ 8๐ ๐ ๐ฅ[๐] = 2 + 4 cos [( ) ๐ + ] + 2 cos [( ) ๐ + ] 5 6 5 3 ๐ฅ[๐] = 2 + 4 sin [( 4๐ 2๐ 8๐ 5๐ ) ๐ + ( )] + 2 sin [( ) ๐ + ( )] 5 3 5 6 Problem 5: Each of the two sequences ๐ฅ1 [๐] and ๐ฅ2 [๐] has a period ๐ = 4 and the corresponding Fourier coefficients are specified as ๐ฅ1 [๐] โ ๐๐ , ๐ฅ2 [๐] โ ๐๐ Where 1 1 ๐0 = ๐3 = ๐1 = ๐2 = 1 ๐๐๐ ๐0 = ๐1 = ๐2 = ๐3 = 1 2 2 Using multiplication property, determine the Fourier Series coefficients ๐๐ for the signal ๐[๐] = ๐ฅ1 [๐]๐ฅ2 [๐]. Solution: Using multiplication property we have 3 ๐ฅ1 [๐]๐ฅ2 [๐] โบ ๐น๐ โบ โ ๐๐ ๐๐โ๐ = โ ๐๐ ๐๐โ๐ ๐= <๐> ๐=0 = ๐0 ๐๐ + ๐1 ๐๐โ1 + ๐2 ๐๐โ2 + ๐3 ๐๐โ3 = ๐๐ + 2๐๐โ1 + 2๐๐โ2 + ๐๐โ3 = 6 So, ๐ฅ1 [๐]๐ฅ2 [๐] โบ ๐น๐ โบ ๐๐ = 6 ๐๐๐ ๐๐๐ ๐. Problem 6: Given ๐ฅ(๐ก) = cos(4๐ก) + cos(7๐ก) and Represent ๐ฅ(๐ก) and ๐ฆ(๐ก) using complex exponentials Solution: For given ๐ฅ(๐ก) = cos(4๐ก) + cos(7๐ก) we can write ๐ฆ(๐ก) = cos(4(๐ก โ 3)) + cos(7(๐ก โ 3)) ๐ฆ(๐ก) = ๐ฅ(๐ก โ 3) Using Eulerโs relationship: 1 1 1 1 ๐ฅ(๐ก) = ๐ ๐4๐ก + ๐ โ๐4๐ก + ๐ ๐7๐ก + ๐ โ๐7๐ก 2 2 2 2 ๐ฆ(๐ก) = 1 โ๐12 ๐4๐ก 1 ๐12 โ๐4๐ก 1 โ๐21 ๐7๐ก 1 ๐21 โ๐7๐ก ๐ ๐ + ๐ ๐ + ๐ ๐ + ๐ ๐ 2 2 2 2 ๐ฆ(๐ก) = 1 ๐4(๐กโ3) 1 โ๐4(๐กโ3) 1 ๐7(๐กโ3) 1 โ๐7(๐กโ3) ๐ + ๐ + ๐ + ๐ 2 2 2 2 ๐ฆ(๐ก) = cos(4(๐ก โ 3)) + cos(7(๐ก โ 3)) Problem7: Given ๐ฅ[๐] = cos [ 2๐๐ ๐ ] โ[๐] = ๐ผ ๐ ๐[๐] , and โ1<๐ผ <1 Determine ๐ฆ[๐]using DT Fourier Series. Solution: Let us write ๐ฅ[๐] in complex exponentials form: ๐ฅ[๐] = 1 ๐(2๐)๐ 1 โ๐(2๐)๐ ๐ ๐ + ๐ ๐ 2 2 We know that โ ๐ป(๐ ๐๐ โ ) = โ โ[๐]๐ โ๐๐๐ โ ๐ โ๐๐๐ = โ๐ผ ๐ ๐=0 = โ(๐๐ โ๐๐ )๐ = ๐=0 ๐=0 Again we know that โ 2๐ 2๐ ๐ฆ[๐] = โ ๐๐ ๐ป (๐ ๐๐ ๐ ) ๐ ๐๐ ๐ ๐ ๐=<๐> 1 1 From ๐ฅ[๐]we found that ๐1 = 2 , ๐โ1 = 2 2๐ 1 2๐ 1 2๐ 2๐ So , ๐ฆ[๐] = 2 ๐ป (๐ ๐ ๐ ) ๐ ๐( ๐ )๐ + 2 ๐ป (๐ โ๐ ๐ ) ๐ โ๐( ๐ )๐ 1 ๐ฆ[๐] = ( 2 For, 1 1 โ ๐ผ๐ 1 1โ๐ผ๐ โ๐ 2๐ ๐ 2๐ 1 ๐( )๐ ๐ )๐ + ( 2๐ 2 โ๐ ๐ = ๐๐ ๐๐ 1 2๐ โ๐( )๐ ๐ 2๐ )๐ 1 โ ๐ผ๐ ๐ ๐ 1 1 โ ๐ผ๐ โ๐๐ We get ๐ฆ[๐] = ๐๐๐๐ ( 2๐ ๐ ๐ + ๐) Problem8: Given ๐ฅ(๐ก) = cos(4๐๐ก) , ๐ฆ(๐ก) = sin(4๐๐ก) , ๐ง(๐ก) = ๐ฅ(๐ก)๐ฆ(๐ก) a) Determine the Fourier series coefficients of ๐ฅ(๐ก). b) Determine the Fourier series coefficients of ๐ฆ(๐ก). c) Use results of parts (a) and (b) along with the multiplication property of the CT Fourier series, to determine the Fourier coefficients of ๐ง(๐ก) = ๐ฅ(๐ก)๐ฆ(๐ก). d) Determine the Fourier series coefficients of ๐ง(๐ก) in trigonometric form, and compare your results with that of part (c). Solution: a) Using Euler Relation ๐ฅ(๐ก) = 1 ๐4๐๐ก 1 โ๐4๐๐ก ๐ + ๐ 2 2 1 The non-zero Fourier series coefficients of ๐ฅ(๐ก) are ๐1 = ๐โ1 = 2 b) Using Euler Relation ๐ฆ(๐ก) = 1 ๐4๐๐ก 1 โ๐4๐๐ก ๐ โ ๐ 2๐ 2๐ 1 โ The non-zero Fourier series coefficients of ๐ฅ(๐ก) are ๐1 = ๐โ1 = 2๐ c) Using the multiplication property we know that ๐ง(๐ก) = ๐ฅ(๐ก)๐ฆ(๐ก) โ ๐น๐ โ ๐๐ = โ ๐๐ ๐๐โ๐ ๐= โโ Therefore, ๐๐ = ๐๐ โ ๐๐ = 1 1 ๐ฟ[๐ โ 2] โ ๐ฟ[๐ + 2] 4๐ 4๐ 1 d) We have ๐ง(๐ก) = ๐ฅ(๐ก)๐ฆ(๐ก) = cos(4๐๐ก) sin(4๐๐ก) = 2 sin(8๐๐ก) Using Euler Relation: 1 ๐8๐ก 1 โ๐8๐ก ๐ โ ๐ 4๐ 4๐ Therefore, the non-zero Fourier series coefficients of ๐ง(๐ก) are: 1 โ ๐2 = ๐โ2 = 4๐ ๐ง(๐ก) =
© Copyright 2026 Paperzz