Homework4 Solutions

Homework4 Solutions
Problem 1: Given the following signal:
๐‘ฅ[๐‘›] = 1 + sin (
2๐œ‹
2๐œ‹
4๐œ‹
๐œ‹
) ๐‘› + 3 sin ( ) ๐‘› + cos ( ๐‘› + )
๐‘
๐‘
๐‘
2
This signal is periodic with fundamental period N and fundamental frequency ๐œ”0 =
2๐œ‹
๐‘
Define Fourier series of this signal, Fourier series coefficients of this signal and sketch the
plots for Real and Imaginary Parts of Fourier Series Coefficients and for Magnitude and
Phase of the same coefficients.
Solution:
a) Fourier Series:
1
1
Using sin ๐œ”0 ๐‘› = 2๐‘— (๐‘’ ๐‘—๐œ”0 ๐‘› โˆ’ ๐‘’ โˆ’๐‘—๐œ”0 ๐‘› ) and cos ๐œ”0 ๐‘› = 2 (๐‘’ ๐‘—๐œ”0 ๐‘› + ๐‘’ โˆ’๐‘—๐œ”0 ๐‘› )
๐‘ฅ[๐‘›] = 1 +
2๐œ‹
2๐œ‹
2๐œ‹
1 ๐‘—(2๐œ‹)๐‘›
3
(๐‘’ ๐‘ โˆ’ ๐‘’ โˆ’๐‘—( ๐‘ )๐‘› ) + (๐‘’ ๐‘—( ๐‘ )๐‘› โˆ’ ๐‘’ โˆ’๐‘—( ๐‘ )๐‘› )
2๐‘—
2๐‘—
4๐œ‹๐‘› ๐œ‹
1 ๐‘—(4๐œ‹๐‘›+๐œ‹)
โˆ’๐‘—(
+ )
๐‘ 2 )
+ (๐‘’ ๐‘ 2 + ๐‘’
2
3 1 ๐‘—(2๐œ‹)๐‘›
3 1 โˆ’๐‘—(2๐œ‹)๐‘›
1 ๐‘—๐œ‹ ๐‘—2(2๐œ‹)๐‘›
๐‘
๐‘
๐‘ฅ[๐‘›] = 1 + ( + ) ๐‘’
+ ( โˆ’ )๐‘’
+ ( ๐‘’ 2) ๐‘’ ๐‘
2 2๐‘—
2 2๐‘—
2
2๐œ‹
๐œ‹
1
โˆ’๐‘—2( )๐‘›
๐‘
+ ( ๐‘’ โˆ’๐‘— 2 ) ๐‘’
2
b) Fourier series coefficients:
๐‘Ž0 = 1
๐‘Ž1 =
3 1 3 1
+ = โˆ’ ๐‘—
2 2๐‘— 2 2
๐‘Ž2 =
1
๐‘—
2
๐‘Ž๐‘˜ = 0
๐‘Žโˆ’1 =
1
๐‘Žโˆ’2 = โˆ’ ๐‘—
2
๐‘“๐‘œ๐‘Ÿ
1
๐‘Ž3๐‘+2 = ๐‘—
2
๐‘˜ โ‰  โˆ’2, โˆ’1,0,1,2
1
๐‘Žโˆ’2โˆ’๐‘ = โˆ’ ๐‘—
2
3 1 3 1
โˆ’ = + ๐‘—
2 2๐‘— 2 2
c) |๐’‚๐’Œ | Magnitude:
|๐‘Ž0 | = 0
3
1
โˆš10
|๐‘Ž1 | = โˆš( )2 + ( )2 =
2
2
2
3
1
โˆš10
|๐‘Žโˆ’1 | = โˆš( )2 + ( )2 =
2
2
2
1
1
|๐‘Ž2 | = โˆš( )2 =
2
2
|๐‘Žโˆ’2 | =
|๐‘Ž๐‘˜ | = 0
๐‘“๐‘œ๐‘Ÿ
๐‘˜ โ‰  โˆ’2, โˆ’1, 0, 1, 2
d) โ‰ฎ ๐’‚๐’Œ โ€“ Phase
โ‰ฎ ๐‘Ž0 = 0
1
โˆ’
1
โ‰ฎ ๐‘Ž1 = arctan ( 2 ) = โˆ’๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘› ( )
3
3
2
โ‰ฎ ๐‘Žโˆ’1
1
1
= arctan ( 2 ) = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘› ( )
3
3
2
1
๐œ‹
โ‰ฎ ๐‘Ž2 = arctan ( 2 ) = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘›โˆž =
0
2
โ‰ฎ ๐‘Žโˆ’2 = โˆ’๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘›โˆž = โˆ’
โ‰ฎ ๐‘Ž๐‘˜ = 0
๐‘“๐‘œ๐‘Ÿ
1
2
๐‘˜ โ‰  โˆ’2, โˆ’1, 0, 1, 2
1
2
Problem 2: Given the following signal
๐œ‹
๐‘ฅ(๐‘ก) = 1 + ๐‘ ๐‘–๐‘›๐œ”0 ๐‘ก + 2๐‘๐‘œ๐‘ ๐œ”0 ๐‘ก + cos(2๐œ”0 ๐‘ก + )
4
This signal is periodic with fundamental frequency ๐œ”0 . Determine the Fourier series of this
signal, Fourier series coefficients of this signal and sketch the plots for Real and Imaginary
Parts of Fourier series coefficients and for magnitude and phase of the same coefficients.
Solution:
a) Fourier Series:
1
1
Using sin ๐œ”0 ๐‘ก = 2๐‘— (๐‘’ ๐‘—๐œ”0 ๐‘ก โˆ’ ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก ) and cos ๐œ”0 ๐‘ก = 2 (๐‘’ ๐‘—๐œ”0 ๐‘ก + ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก )
๐œ‹
๐œ‹
1 ๐‘—๐œ” ๐‘ก
1
[๐‘’ 0 โˆ’ ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก ] + [๐‘’ ๐‘—๐œ”0 ๐‘ก + ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก ] + [๐‘’ ๐‘—(2๐œ”0 ๐‘ก+ 2 ) + ๐‘’ โˆ’๐‘—(2๐œ”0 ๐‘ก+ 2 ) ]
2๐‘—
2
1
1
1 ๐œ‹
๐‘ฅ(๐‘ก) = 1 + (1 + ) ๐‘’ ๐‘—๐œ”0 ๐‘ก + (1 โˆ’ ) ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก + ( ๐‘’ ๐‘—( 4 ) ) ๐‘’ ๐‘—2๐œ”0 ๐‘ก
2๐‘—
2๐‘—
2
๐œ‹
1
+ ( ๐‘’ โˆ’๐‘—( 4 ) ) ๐‘’ โˆ’๐‘—2๐œ”0 ๐‘ก
2
๐‘ฅ(๐‘ก) = 1 +
b) Fourier series coefficients:
๐‘Ž0 = 1
๐‘Ž1 = 1 +
๐‘Ž2 =
1
1
=1โˆ’ ๐‘—
2๐‘—
2
๐‘Žโˆ’1 = 1 โˆ’
1 ๐‘—(๐œ‹) โˆš2 โˆš2
๐‘’ 4 =
+
๐‘—
2
4
4
๐‘Ž๐‘˜ = 0
๐‘“๐‘œ๐‘Ÿ
1
1
=1+ ๐‘—
2๐‘—
2
๐œ‹
1
โˆš2 โˆš2
๐‘Žโˆ’2 = โˆ’ ๐‘’ โˆ’๐‘—( 4 ) =
โˆ’
๐‘—
2
4
4
|๐‘˜| > 2
c) |๐’‚๐’Œ | Magnitude:
|๐‘Ž0 | = 1
1
โˆš5
|๐‘Ž1 | = โˆš(1)2 + (โˆ’ )2 =
2
2
1
โˆš2
โˆš2
|๐‘Ž2 | = โˆš( )2 + ( )2 =
4
4
2
1
=
2
|๐‘Ž๐‘˜ | = 0
d)
๐‘“๐‘œ๐‘Ÿ
โ‰ฎ ๐’‚๐’Œ โ€“ Phase
โ‰ฎ ๐‘Ž0 = 0
|๐‘˜| > 2
1
โˆš5
|๐‘Žโˆ’1 | = โˆš(1)2 + ( )2 =
2
2
|๐‘Žโˆ’2 | = โˆš(
โˆš2 2
โˆš2
) + (โˆ’ )2
4
4
1
1
โ‰ฎ ๐‘Ž1 = arctan ( 2) = โˆ’๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘› ( )
1
2
โˆ’
โ‰ฎ ๐‘Žโˆ’1
1
1
= arctan ( 2 ) = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘› ( )
1
2
โˆš2
โ‰ฎ ๐‘Ž2 = arctan ( 4 ) = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘›1
โˆš2
4
โ‰ฎ ๐‘Žโˆ’2
โˆš2
= arctan ( 4 ) = โˆ’๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘Ž๐‘›1
โˆš2
4
โ‰ฎ ๐‘Ž๐‘˜ = 0 ,
โˆ’
๐‘“๐‘œ๐‘Ÿ
|๐‘˜| > 2
Problem 3: Given the following signal
2๐œ‹
5๐œ‹
๐‘ฅ(๐‘ก) = 2 + cos ( ๐‘ก) + 4 sin ( ๐‘ก)
3
3
Determine the fundamental frequency ๐œ”0 and Fourier series coefficients ๐‘Ž๐‘˜ such that
โˆž
๐‘ฅ(๐‘ก) = โˆ‘ ๐‘Ž๐‘˜ ๐‘’ ๐‘—๐‘˜๐œ”0 ๐‘ก
๐‘˜=โˆ’โˆž
Solution:
a) Fourier Series:
1
1
Using sin ๐œ”0 ๐‘ก = 2๐‘— (๐‘’ ๐‘—๐œ”0 ๐‘ก โˆ’ ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก ) and cos ๐œ”0 ๐‘ก = 2 (๐‘’ ๐‘—๐œ”0 ๐‘ก + ๐‘’ โˆ’๐‘—๐œ”0 ๐‘ก )
2๐œ‹
2๐œ‹
5๐œ‹
5๐œ‹
1
4
๐‘ฅ(๐‘ก) = 2 + (๐‘’ ๐‘—( 3 )๐‘ก + ๐‘’ โˆ’๐‘—( 3 )๐‘ก ) + (๐‘’ ๐‘—( 3 )๐‘ก โˆ’ ๐‘’ โˆ’๐‘—( 3 )๐‘ก )
2
2๐‘—
๐‘ฅ(๐‘ก) = 2 +
2๐œ‹
2๐œ‹
1 ๐‘—(2๐œ‹)๐‘ก 1 โˆ’๐‘—(2๐œ‹)๐‘ก
3
๐‘’ 3 + ๐‘’
โˆ’ 2๐‘—๐‘’ ๐‘—5( 6 )๐‘ก + 2๐‘—๐‘’ โˆ’๐‘—5( 6 )๐‘ก
2
2
b) Fundamental Frequency
๐œ”0 =
2๐œ‹ ๐œ‹
=
6
6
c) Fourier coefficients
The non-zero Fourier coefficients of ๐‘ฅ(๐‘ก) are:
1
โˆ—
๐‘Ž0 = 2; ๐‘Ž2 = ๐‘Žโˆ’2 = ; ๐‘Ž5 = ๐‘Žโˆ’5
= โˆ’2๐‘—
2
Problem 4:
๐‘—๐œ‹
๐‘—๐œ‹
โˆ—
โˆ—
Given ๐‘Ž0 = 2; ๐‘Ž2 = ๐‘Žโˆ’2
= 2๐‘’ 6 ; ๐‘Ž4 = ๐‘Žโˆ’4
= ๐‘’ 3 of a discrete-time periodic signal ๐‘ฅ[๐‘›]
which is real valued and has a fundamental period ๐‘ = 5.
Express ๐‘ฅ[๐‘›]in the form
โˆž
๐‘ฅ[๐‘›] = ๐ด0 + โˆ‘ ๐ด๐‘˜ sin(๐œ”๐‘˜ ๐‘› + ๐œ‘๐‘˜ )
๐‘˜=1
Solution:
Using Fourier Series Synthesis Equation
2๐œ‹
2๐œ‹
2๐œ‹
2๐œ‹
๐‘ฅ[๐‘›] = ๐‘Ž0 + ๐‘Ž2 ๐‘’ ๐‘—2( ๐‘ )๐‘› + ๐‘Žโˆ’2 ๐‘’ โˆ’๐‘—2( ๐‘ )๐‘› + ๐‘Ž4 ๐‘’ ๐‘—4( ๐‘ )๐‘› + ๐‘Žโˆ’4 ๐‘’ โˆ’๐‘—4( ๐‘ )๐‘›
๐œ‹
4๐œ‹
๐œ‹
4๐œ‹
๐œ‹
8๐œ‹
๐œ‹
8๐œ‹
๐‘ฅ[๐‘›] = 2 + 2๐‘’ ๐‘—( 6 ) ๐‘’ ๐‘—( 5 )๐‘› + 2๐‘’ โˆ’๐‘—(6 ) ๐‘’ โˆ’๐‘—( 5 )๐‘› + ๐‘’ ๐‘— 3 ๐‘’ ๐‘—( 5 )๐‘› + ๐‘’ โˆ’๐‘— 3 ๐‘’ โˆ’๐‘—( 5 )๐‘›
4๐œ‹
๐œ‹
8๐œ‹
๐œ‹
๐‘ฅ[๐‘›] = 2 + 4 cos [( ) ๐‘› + ] + 2 cos [( ) ๐‘› + ]
5
6
5
3
๐‘ฅ[๐‘›] = 2 + 4 sin [(
4๐œ‹
2๐œ‹
8๐œ‹
5๐œ‹
) ๐‘› + ( )] + 2 sin [( ) ๐‘› + ( )]
5
3
5
6
Problem 5:
Each of the two sequences ๐‘ฅ1 [๐‘›] and ๐‘ฅ2 [๐‘›] has a period ๐‘ = 4 and the corresponding
Fourier coefficients are specified as
๐‘ฅ1 [๐‘›] โ‡’ ๐‘Ž๐‘˜ ,
๐‘ฅ2 [๐‘›] โ‡’ ๐‘๐‘˜
Where
1
1
๐‘Ž0 = ๐‘Ž3 = ๐‘Ž1 = ๐‘Ž2 = 1 ๐‘Ž๐‘›๐‘‘ ๐‘0 = ๐‘1 = ๐‘2 = ๐‘3 = 1
2
2
Using multiplication property, determine the Fourier Series coefficients ๐‘๐‘˜ for the signal
๐‘”[๐‘›] = ๐‘ฅ1 [๐‘›]๐‘ฅ2 [๐‘›].
Solution:
Using multiplication property we have
3
๐‘ฅ1 [๐‘›]๐‘ฅ2 [๐‘›] โŸบ ๐น๐‘† โŸบ
โˆ‘ ๐‘Ž๐œ„ ๐‘๐‘˜โˆ’๐‘™ = โˆ‘ ๐‘Ž๐œ„ ๐‘๐‘˜โˆ’๐‘™
๐‘™= <๐‘>
๐‘™=0
= ๐‘Ž0 ๐‘๐‘˜ + ๐‘Ž1 ๐‘๐‘˜โˆ’1 + ๐‘Ž2 ๐‘๐‘˜โˆ’2 + ๐‘Ž3 ๐‘๐‘˜โˆ’3 = ๐‘๐‘˜ + 2๐‘๐‘˜โˆ’1 + 2๐‘๐‘˜โˆ’2 + ๐‘๐‘˜โˆ’3 = 6
So, ๐‘ฅ1 [๐‘›]๐‘ฅ2 [๐‘›] โŸบ ๐น๐‘† โŸบ ๐‘๐‘˜ = 6 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘˜.
Problem 6:
Given
๐‘ฅ(๐‘ก) = cos(4๐‘ก) + cos(7๐‘ก)
and
Represent ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก) using complex exponentials
Solution:
For given ๐‘ฅ(๐‘ก) = cos(4๐‘ก) + cos(7๐‘ก) we can write
๐‘ฆ(๐‘ก) = cos(4(๐‘ก โˆ’ 3)) + cos(7(๐‘ก โˆ’ 3))
๐‘ฆ(๐‘ก) = ๐‘ฅ(๐‘ก โˆ’ 3)
Using Eulerโ€™s relationship:
1
1
1
1
๐‘ฅ(๐‘ก) = ๐‘’ ๐‘—4๐‘ก + ๐‘’ โˆ’๐‘—4๐‘ก + ๐‘’ ๐‘—7๐‘ก + ๐‘’ โˆ’๐‘—7๐‘ก
2
2
2
2
๐‘ฆ(๐‘ก) =
1 โˆ’๐‘—12 ๐‘—4๐‘ก 1 ๐‘—12 โˆ’๐‘—4๐‘ก 1 โˆ’๐‘—21 ๐‘—7๐‘ก 1 ๐‘—21 โˆ’๐‘—7๐‘ก
๐‘’
๐‘’ + ๐‘’ ๐‘’
+ ๐‘’
๐‘’ + ๐‘’ ๐‘’
2
2
2
2
๐‘ฆ(๐‘ก) =
1 ๐‘—4(๐‘กโˆ’3) 1 โˆ’๐‘—4(๐‘กโˆ’3) 1 ๐‘—7(๐‘กโˆ’3) 1 โˆ’๐‘—7(๐‘กโˆ’3)
๐‘’
+ ๐‘’
+ ๐‘’
+ ๐‘’
2
2
2
2
๐‘ฆ(๐‘ก) = cos(4(๐‘ก โˆ’ 3)) + cos(7(๐‘ก โˆ’ 3))
Problem7:
Given
๐‘ฅ[๐‘›] = cos [
2๐œ‹๐‘›
๐‘
]
โ„Ž[๐‘›] = ๐›ผ ๐‘› ๐‘ˆ[๐‘›] ,
and
โˆ’1<๐›ผ <1
Determine ๐‘ฆ[๐‘›]using DT Fourier Series.
Solution:
Let us write ๐‘ฅ[๐‘›] in complex exponentials form:
๐‘ฅ[๐‘›] =
1 ๐‘—(2๐œ‹)๐‘› 1 โˆ’๐‘—(2๐œ‹)๐‘›
๐‘’ ๐‘ + ๐‘’ ๐‘
2
2
We know that
โˆž
๐ป(๐‘’
๐‘—๐œ”
โˆž
) = โˆ‘ โ„Ž[๐‘›]๐‘’
โˆ’๐‘—๐œ”๐‘›
โˆž
๐‘› โˆ’๐‘—๐œ”๐‘›
= โˆ‘๐›ผ ๐‘’
๐‘›=0
= โˆ‘(๐‘Ž๐‘’ โˆ’๐‘—๐œ” )๐‘› =
๐‘›=0
๐‘›=0
Again we know that
โˆž
2๐œ‹
2๐œ‹
๐‘ฆ[๐‘›] = โˆ‘ ๐‘Ž๐‘˜ ๐ป (๐‘’ ๐‘—๐‘˜ ๐‘ ) ๐‘’ ๐‘—๐‘˜ ๐‘ ๐‘›
๐‘˜=<๐‘>
1
1
From ๐‘ฅ[๐‘›]we found that ๐‘Ž1 = 2 , ๐‘Žโˆ’1 = 2
2๐œ‹
1
2๐œ‹
1
2๐œ‹
2๐œ‹
So , ๐‘ฆ[๐‘›] = 2 ๐ป (๐‘’ ๐‘— ๐‘ ) ๐‘’ ๐‘—( ๐‘ )๐‘› + 2 ๐ป (๐‘’ โˆ’๐‘— ๐‘ ) ๐‘’ โˆ’๐‘—( ๐‘ )๐‘›
1
๐‘ฆ[๐‘›] = (
2
For,
1
1 โˆ’ ๐›ผ๐‘’
1
1โˆ’๐›ผ๐‘’
โˆ’๐‘—
2๐œ‹
๐‘
2๐œ‹
1
๐‘—( )๐‘›
๐‘
)๐‘’
+ (
2๐œ‹
2
โˆ’๐‘—
๐‘
= ๐‘Ÿ๐‘’ ๐‘—๐œƒ
1
2๐œ‹
โˆ’๐‘—( )๐‘›
๐‘
2๐œ‹ )๐‘’
1 โˆ’ ๐›ผ๐‘’ ๐‘— ๐‘
1
1 โˆ’ ๐›ผ๐‘’ โˆ’๐‘—๐œ”
We get ๐‘ฆ[๐‘›] = ๐‘Ÿ๐‘๐‘œ๐‘ (
2๐œ‹
๐‘
๐‘› + ๐œƒ)
Problem8:
Given
๐‘ฅ(๐‘ก) = cos(4๐œ‹๐‘ก) , ๐‘ฆ(๐‘ก) = sin(4๐œ‹๐‘ก) , ๐‘ง(๐‘ก) = ๐‘ฅ(๐‘ก)๐‘ฆ(๐‘ก)
a) Determine the Fourier series coefficients of ๐‘ฅ(๐‘ก).
b) Determine the Fourier series coefficients of ๐‘ฆ(๐‘ก).
c) Use results of parts (a) and (b) along with the multiplication property of the CT
Fourier series, to determine the Fourier coefficients of ๐‘ง(๐‘ก) = ๐‘ฅ(๐‘ก)๐‘ฆ(๐‘ก).
d) Determine the Fourier series coefficients of ๐‘ง(๐‘ก) in trigonometric form, and compare
your results with that of part (c).
Solution:
a) Using Euler Relation
๐‘ฅ(๐‘ก) =
1 ๐‘—4๐œ‹๐‘ก 1 โˆ’๐‘—4๐œ‹๐‘ก
๐‘’
+ ๐‘’
2
2
1
The non-zero Fourier series coefficients of ๐‘ฅ(๐‘ก) are ๐‘Ž1 = ๐‘Žโˆ’1 = 2
b) Using Euler Relation
๐‘ฆ(๐‘ก) =
1 ๐‘—4๐œ‹๐‘ก 1 โˆ’๐‘—4๐œ‹๐‘ก
๐‘’
โˆ’ ๐‘’
2๐‘—
2๐‘—
1
โˆ—
The non-zero Fourier series coefficients of ๐‘ฅ(๐‘ก) are ๐‘1 = ๐‘โˆ’1
= 2๐‘—
c) Using the multiplication property we know that
๐‘ง(๐‘ก) = ๐‘ฅ(๐‘ก)๐‘ฆ(๐‘ก) โ†” ๐น๐‘† โ†” ๐‘๐‘˜ = โˆ‘ ๐‘Ž๐œ„ ๐‘๐‘˜โˆ’๐‘’
๐‘™= โˆ’โˆž
Therefore,
๐‘๐‘˜ = ๐‘Ž๐‘˜ โˆ— ๐‘๐‘˜ =
1
1
๐›ฟ[๐‘˜ โˆ’ 2] โˆ’ ๐›ฟ[๐‘˜ + 2]
4๐‘—
4๐‘—
1
d) We have ๐‘ง(๐‘ก) = ๐‘ฅ(๐‘ก)๐‘ฆ(๐‘ก) = cos(4๐œ‹๐‘ก) sin(4๐œ‹๐‘ก) = 2 sin(8๐œ‹๐‘ก)
Using Euler Relation:
1 ๐‘—8๐‘ก 1 โˆ’๐‘—8๐‘ก
๐‘’ โˆ’ ๐‘’
4๐‘—
4๐‘—
Therefore, the non-zero Fourier series coefficients of ๐‘ง(๐‘ก) are:
1
โˆ—
๐‘2 = ๐‘โˆ’2
=
4๐‘—
๐‘ง(๐‘ก) =