Signals and Systems (EKT230)
Tutorial IV
1. Compute the Fourier transform of each of the following signals :
(a) x[n] = u[n-2] – u[n-6]
5
X (e j ) x[n]e jn
n2
e j 2 e j 3 e j 4 e j 5
e 2 j e 3 j e 4 j e 5 j
1
(b) x[n] = ( ) n u[n 1]
2
X ( e j )
x[n]e
jn
n
1
1
(2)
n
e jn
n
1
( ) n e jn
n 1 2
1
1
( e j ) ( e j ) n
2
n 0 2
1
1
( e j )(
)
1 j
2
1 ( e )
2
j
e
(
)
2 e j
(c) x[n] = 2n sin(
X (e j )
n)u[n]
4
2
n
sin(
n
0
2
n
sin(
n
2 n sin(
n 0
4
4
4
n)u[n]e jn
n ) e j n
(n))e jn
e
e j / 4 n jn
e
2 n
2
j
n 0
1
1
1
( ) n e j / 4 n e jn ( ) n e j / 4 n e jn
2 j n 0 2
n 0 2
j / 4 n
-2-
Tutorial IV
1
1
1
2 j 1 j ( / 4 )
1 j ( / 4 )
1 e
1 e
2
2
(d) x[n] = a|n|
X ( e j )
x[n]e
jn
n
1
a n e jn a n e j n
n
n 0
(ae j ) n (ae j ) n
m 1
n 0
1
1 ae j
m 0
1
1
(ae j )(
)
j
1 ae
1 ae j
(ae j )(1 ae j ) (1 ae j )
(1 ae j )(1 ae j )
(ae j ) (ae j ) n
(ae j )(1 ae j ) (1 ae j )
(1 ae j )(1 ae j )
1 a2
e j e j
1 2a (
) a2
2
1 a2
1 2a cos a 2
2. The following are the Fourier Transform of discrete-time signals. Determine the signal
corresponding to each transform.
(a)
X(ejω) =
1,
0,
3
4
| |
3
4
4
3
| | ,0 | |
4
4
4
0
3
4
4
-3-
x[n]
1
2
X (e
j
Tutorial IV
)e jn d
2
/ 4
3 / 4 jn
e d e jn d
3 / 4
/4
3
/
4
/ 4
1 e j (3 / 4) n
e j (3 / 4) n
2
jn / 4
jn 3 / 4
1 e j (3 / 4) n e j ( / 4 ) n e j ( / 4) n e j (3 / 4) n
2 jn
jn
jn
jn
1
2
e j (3 / 4 ) n e j (3 / 4) n e j ( / 4 ) n
2 j
2 j 2 j
1
3
n) sin( n)
sin(
n
4
4
(b)
1
n
1
1 ( )e j
3
X (e j )
1
1
1 e j e 2 j
4
8
A
B
A
B
1 j
1 j
(1 e ) (1 e )
2
4
1 13 (2)
2
1
9
(1 (2))
4
1 13 (4)
7
1
9
(1 (4))
2
X ( e j )
2/9
7/9
1
1
(1 e j ) (1 e j )
2
4
Take inverse Fourier transform,
n
n
7 1
2 1
x[n] u[n]
9 4
9 2
e j ( / 4 ) n
2 j
-4Tutorial IV
3. A signal x(t) has the indicated Laplace
transform X(s). Plot the poles and zeros in the
s-plane and determine the Fourier Transform of x(t) without inverting X(s).
s2 1
(a) X ( s) 2
s 5s 6
(b) X ( s)
s2 1
s2 s 1
-5-
Tutorial IV
4. Use the basic Laplace transforms and the Laplace transform properties given in Tables to
determine the unilateral Laplace transform of the following signals :
d
(a) x(t ) {te t u (t )}
dt
(b) x(t ) tu(t ) * cos( 2t )u (t )
(c) x(t ) u (t 1) * e 2t u (t 1)
-6-
(d) x(t ) t
Tutorial IV
d t
{e cos(t )u (t )}
dt
5. Use the basic Laplace transforms and the Laplace transform properties given in Tables
to determine the time signals corresponding to the following unilateral Laplace
transforms:
(a) X ( s ) (
1
1
)(
)
s2 s3
(b) X ( s) e 2 s
(c) X ( s )
d
1
(
)
ds ( s 1) 2
1
(2 s 1) 2 4
-7-
Tutorial IV
6. Use the method of partial fractions to find the time signals corresponding to the following
unilateral Laplace transforms :
(a) X ( s )
s3
s 3s 2
(b) X ( s )
5s 4
s 3s 2 2 s
(c) X ( s)
s2 3
( s 2)( s 2 2s 1)
2
3
7. Use Laplace transform to determine the transfer function and impulse response of the system.
-8(a)
d
y (t ) 10 y (t ) 10 x(t )
dt
(b)
d2
d
d
y (t ) y (t ) 2 y (t ) 4 x(t ) 5 x(t )
2
dt
dt
dt
Tutorial IV
8. Use the tables of z-transforms and the z-transform properties to determine the z-transforms of
the following signals :
1
(a) x[n] ( ) n u[n] * 2 n u[n 1]
2
1
1
(b) x[n] n( ) n u[n] * ( ) n u[n 2]
2
4
(c) x[n] u[n]
-9-
Tutorial IV
9. Use the method of partial fractions to obtain the time-domain signals corresponding to the
following z-transforms:
7
1 z 1
1
6
(a) X ( z )
, | z |
1
1
2
(1 z 1 )(1 z 1 )
2
3
1
(b) X ( z )
(1
7 1
z
6
1 1
1
z )(1 z 1 )
2
3
, | z |
1
3
- 10 -
Tutorial IV
1
z
4
(c) X ( z ) 2
, | z | 4
z 16
3z 2
(d) X ( z )
2z 4 2z 3 2z 2
, | z | 1
z 2 1
10. Determine the impulse response corresponding to the following transfer functions if (i) the
system is stable or (ii) the system is causal:
3
2 ( ) z 1
2
(a) H ( z )
1
(1 2 z 1 )(1 z 1 )
2
- 11 -
(b) H ( z )
Tutorial IV
4z
1
1
z2 z
4
16
11. Determine (i) transfer function and (ii) difference equation representation of the causal
systems described by the following difference equations:
1
(a) y[n] y[n 1] 2 x[n 1]
2
- 12 -
Tutorial IV
(b) y[n] = x[n] –x[n-2] + x[n-4] – x[n-6]
12. Determine the zero-input response, zero-state response and the complete response of the
systems by using the unilateral z-transform. Given are the inputs and the initial conditions of
the following difference equations.
(a) y[n]
1
1
y[n 1] 2 x[n], y[1] 1, x[n] ( ) n u[n]
3
2
Take z-transform of X(z) and Y(z),
1
1
1 z 1
2
1
Y ( z ) ( z 1Y ( z ) 1) 2 X ( z )
3
X ( z)
i) For zero-input response(ZIR),
- 13 -
Tutorial IV
1
Y ( z ) ( z 1Y ( z ) 1) 0
3
1
1
Y ( z ) z 1Y ( z ) 0
3
3
1
1
Y ( z )(1 z 1 )
3
3
1
3
Y ( z ) ZIR
1
1 z 1
3
Take inverse z-transform,
ZIR is
n
y[n] ZIR
11
u[n]
33
ii) For zero-state response(ZSR),
1
Y ( z ) ( z 1Y ( z )) 2 X ( z )
3
1
1
Y ( z )(1 z 1 ) 2(
)
1
3
1
1 z
2
1
1
Y ( z ) ZSR 2(
)(
)
1 1
1 1
1 z
(1 z )
2
3
By using partial fraction method,
A
B
1
1
1 z 1 1 z 1
2
3
2
2
A
1
5
1 (2)
3
3
6
A
5
Y ( z)
6
Y ( z ) ZSR
4
5
5
1 1
1 1
1 z
1 z
2
3
2
2
1
5
1 (3)
2
2
4
B
5
B
- 14 -
Take inverse z-transform,
6 1 n 4 1 n
y[n] ZSR u[n]
5 3
5 2
1
y[n 2] x[n 1], y[1] 1, y[2] 0, x[n] 2u[n]
9
Take z-transform of X(z) and Y(z),
(b) y[n]
2
1 z 1
1
Y ( z ) ( z 2Y ( z ) z 1 ) z 1 X ( z )
9
X ( z)
i) For zero-input response(ZIR),
1
Y ( z ) ( z 2Y ( z ) z 1 ) 0
9
1
1
Y ( z ) z 2Y ( z ) z 1
9
9
1 2
1 1
Y ( z )(1 z ) z
9
9
1 1
z
9
Y ( z ) ZIR
1
1 z 2
9
Use partial fraction method
Tutorial IV
- 15 Az
Bz
1
1
z
z
3
3
Y ( z)
z
A
B
1
1
1
1
z
z ( z )( z ) z
z
3
3
3
3
1
1
1
( z )Y ( z )
(z )
B( z )
3
3
3
A
1
1
1
z
( z )( z )
z
3
3
3
Y ( z)
A
1
1
(z )
3
z
1
3
1
B
(z
1
3
3
2
z
3
2
1
3
(1 / 9)(3 / 2) (1 / 9)(3 / 2)
1
1
z
z
3
3
1
1
1
1 1
6 1 1
1 z
1 z
3
3
Y ( z ) ZIR
Y ( z ) ZIR
Take the inverse z-transform of Y(z)ZIR
1 1 1
6 3 3
n
y[n] ZIR
n
u[n]
ii) For zero-state response(ZSR),
Tutorial IV
- 16 1
Y ( z ) ( z 2Y ( z )) z 1 X ( z )
9
1
2 z 1
Y ( z )(1 z 2 )
9
1 z 1
2 z 1
Y ( z ) ZSR (
)
1 2
1
(1 z )(1 z )
9
Use partial fraction method,
Az
Bz
Cz
1
1 z 1
z
z
3
3
3
A
2
3
B
4
9
C
4
9/4
3/ 4
3/ 2
Y ( z ) ZIR
1
1
1
1 z
1 z 1 1 z 1
3
3
Y ( z)
Take inverse z-transform,
9 3 1 n 3 1 n
y[n] ZSR u[n]
2 3
4 4 3
Tutorial IV
Signals and Systems (EKT230)
Tutorial IV
Appendix 1
Lampiran 1
FOURIER TRANSFORM
Signal
Transform
LAPLACE TRANSFORM
Signal
Transform
1
u(t)
s
1
tu(t)
s2
Z-TRANSFORM
Signal
Transform
[n]
(t)
1
1
2()
u(t)
1
( )
j
(t - )
e-s
n u[n]
e-atu(t)
1
a j
e-atu(t)
1
sa
n n u[n]
1
( s a) 2
[cos(1n)]u[n]
1 z 1 cos 1
1 z 1 2 cos 1 z 2
1
u[n]
1
1
1 z 1
1
1 z 1
z 1
(1 z 1 ) 2
te-atu(t)
a j 2
te-atu(t)
e-a|t|
2a
2
a 2
[cos(1t )]u(t )
s
2
s 12
[sin( 1n)]u[n]
z 1 sin 1
1 z 1 2 cos 1 z 2
[sin( 1t )]u(t )
1
2
s 12
[r n cos(1n)]u[n]
1 z 1 r cos 1
1 z 1 2r cos 1 r 2 z 2
sa
( s a ) 2 12
[r sin( 1n)]u[n]
z 1 r sin 1
1 z 1 2r cos 1 r 2 z 2
1
2
e t
2
/2
e
2 / 2
[e
at
cos(1t )]u(t )
[e at sin( 1t )]u (t )
1
( s a) 2 12
n
© Copyright 2025 Paperzz