On the 3 × 3 lemma Diana Rodelo Marino Gran & Zurab Janelidze AIM: (denormalized) 3 × 3 lemma for star-regular cats PLAN: 1. (Denormalized) 3 × 3 lemma and known results 2. Star-regular cats and basic notions 3. The (upper/lower and middle) 3 × 3 lemmas for starregular cats and necessary conditions 4. The equivalence of the upper and lower 3 × 3 lemmas 5. The middle 3 × 3 lemma CatAlg 2011, 28th of September of 2011 1. (Denormalized) 3 × 3 lemma and known results · Classical (abelian cats) •_ / _ •_ / • / • • / • _ 3 cols ses / • • / •_ _ + middle row ses 3 × 3 lemma: upper row ses ⇐⇒ lower row ses upper 3 × 3 lemma: upper row ses ⇐= lower row ses lower 3 × 3 lemma: upper row ses =⇒ lower row ses + middle row null middle 3 × 3 lemma: upper and lower rows ses =⇒ middle row ses · Known results: [ZJ, The pointed subobject fnct, 3 × 3 lemmas and subtractivity of spans, 2010] normal cat (pointed, regular cat sth regular epis = normal epis) - upper 3×3 lemma ⇐⇒ lower 3×3 lemma ⇐⇒ subtractivity - middle 3 × 3 lemma ⇐⇒ protomodularity 2 1. (Denormalized) 3 × 3 lemma and known results · Denormalized (non-pointed context) ses → exact fork • // • / • • // • / • _ _ // / • • 3 cols ef _ • + middle row ef 3 × 3 lemma: upper row ef ⇐⇒ lower row ef upper 3 × 3 lemma: upper row ef ⇐= lower row ef lower 3 × 3 lemma: upper row ef =⇒ lower row ef (+ middle row equal) middle 3 × 3 lemma: upper and lower rows ef =⇒ middle row ef · Known results: [DB, The denormalized 3 × 3 lemma, 2001] - 3 × 3 lemma holds for regular Mal’tsev cats [SL, The 3-by-3 lemma for regular Goursat categories, 2004] - 3 × 3 lemma holds for regular Goursat cats [MG & DR, A new characterisation of Goursat categories, 2010] regular cat - upper 3 × 3 lemma ⇐⇒ lower 3 × 3 lemma ⇐⇒ Goursat - middle 3 × 3 lemma always true 3 2. Star-regular cats and basic results normal cats regular cats , r star regular cats [MG, ZJ, AU, A good theory of ideals in a regular multi-pointed cat, 2011] C lex & N ideal · N -kernel (of f ): · star: (f ∈ N or g ∈ N ⇒ gf ∈ N ) k / X K σ = [σ1 , σ2 ] S Def. C star-regular: f / Y σ1 ∈N / / σ2 fk ∈ N & k univ. X - C regular - ∀ map f , ∃ N -kernel of f - regular epi = coequalizer of a star pointed context: N = class of null ms (C pointed) - N -kernel = kernel - star = morphism - star-regular cat = normal cat total context: N = class of all ms - N -kernel = identity - star = pair of parallel ms - star-regular cat = regular cat 4 2. Star-regular cats and basic results C lex & N ideal · N -kernel (of f ): · star: (f ∈ N or g ∈ N ⇒ gf ∈ N ) σ = [σ1 , σ2 ] · star-pullback: σ1 ∈N / / σ2 S σ S // X g fk ∈ N & k univ. X f σi = τi g & (g, σ) univ. f T · constellation: f / Y /k / X K τ // β Y H // E α εi βj = ϕj αi ε F ϕ // X · universal cstl. (over (ε, ϕ)): · star-kernel (of f ): K · star-exact sequence: κ∗f K // cstl. sth (α, β) univ. f / X κ∗f // X f κ1 = f κ2 & κ∗f univ. Y f ,2 Y f = coeq(κ∗f ) pointed context total context star-pb = pb star-pb = joint pb cstl. = comm. square ex. of cstl.: double equiv. universal cstl. = pb ex. of universal cstl.: H = F E star-kernel = kernel star-kernel = kernel pair star-es = ses star-es = exact fork 5 2. Star-regular cats and basic results P e λ // X c f 2 1 K κ // Y d / C m /Q Lem 1. C regular w/ N -kernels (a) κ = κ∗d , m mono. 1 star-pb iff λ = κ∗c (b) c = coeq(λ), e epi. 2 po iff d = coeq(κ) Rem. C star-regular f regular epi ⇒ f = coeq(κ∗f ) Lem 2. C star-regular, κ = κ∗d , c regular epi. 3-out-of-2 pp for: (a) m mono. (b) λ = κ∗c (c) 1 star-pb 6 3. The 3×3 lemmas for star-regular cats & nec conds · C star-regular cat · star-es look like denormalized 3 × 3 lemmas generalizes (de)normalized 3 × 3 lemmas · 3 × 3 diagram H κ∗a F a β ϕ // δ /G _ W 3 cols star es κ∗g κ∗e X e // b E 1 _ D // f / 2 Y d / _ g Z upper 3 × 3 lemma: middle + lower rows star-es =⇒ upper row star-es lower 3 × 3 lemma: upper + middle rows star-es =⇒ lower row star-es + f ϕ1 = f ϕ2 middle 3 × 3 lemma: upper + lower rows star-es =⇒ middle row star-es · Necessary conditions: all cols and rows star-es - 1 universal constellation & 2 po 3 × 3 diagram + middle row star-es - 2 po ⇐⇒ d = coeq(δ) + C has enough trivial objs (“harmless”) - 1 universal constellation ⇐⇒ β = κ∗b ⇐⇒ δ monic star 7 3. The 3×3 lemmas for star-regular cats & nec conds Def. X N -trivial iff 1X ∈ N (∀ X / ·, · / X ∈ N) pointed context total context X N -trivial ⇒ X = 0 all objs are N -trivial Rem. 1. ⇓ 2. gf ∈ N , f regular epi ⇒ g ∈ N N -trivial objs closed for quotients Def. C has enough trivial objects: - N closed ideal: · ∈N = / · ! · N trivial - N -trivial objs closed for subobjs - X N -trivial =⇒ X × X N -trivial Prop. C regular w/ N -kernels. TFAE: (a) C has enough trivial objs (b) R (c) N (d) H ρ1 ∈N / / ρ2 ∈N n / X monic bi-star =⇒ R N -trivial S β // (s1 ,s2 ) / / X ×X E α sth s1 n, s2 n ∈ N =⇒ β star ε monic star F ϕ // X star 8 =⇒ n ∈ N 3. The 3×3 lemmas for star-regular cats & nec conds Thm. C star-regular w/ enough trivial objs. H κ∗a // κ∗f δ // X / G κ∗e e _ D // b E 1 F a β W γ monic star f /Y g 2 / d Z TFAE: (a) 1 universal constellation (b) β = κ∗b (c) δ monic star Lem. ε / / - E - E X ε=κ∗e // X star iff e / W E×E ε×ε / / iff E × E X ×X ε×ε=κ∗e×e star // e×e X ×X / W ×W Prop. H β // ⇐⇒ E α F ϕ (β1 ,β2 ) /E ×E α ε monic star H ε×ε // X F universal constellation / (ϕ1 ,ϕ2 ) X ×X star-pb upper 3 × 3 lemma: middle + lower rows star-es =⇒ b regular epi lower 3 × 3 lemma: upper + middle rows star-es =⇒ δ = κ∗d 9 4. The equivalence of upper and lower 3 × 3 lemmas Aim. upper 3 × 3 lemma ⇐⇒ lower 3 × 3 lemma ⇐⇒ subtractivity Goursat ) w symmetric saturation property Def. regular diamond e x ; W d & X Z f % Y y = g - left saturated: e(κ∗f ) = κ∗d - right saturated: f (κ∗e ) = κ∗g - saturated: left saturated + right saturated Def. C has symmetric saturation property: left saturated = right saturated = saturated Thm. C star-regular w/ enough trivial objs. TFAE: (a) upper 3 × 3 lemma holds (b) lower 3 × 3 lemma holds (c) C has symmetric saturation pp pointed context total context symm. sat. pp = subtractivity symm. sat. pp = Goursat pp 10 5. The middle 3 × 3 lemmas Aim. middle 3 × 3 lemma ⇐⇒ protomodularity always true ) v short five lemma short five lemma. F a κ∗f D κ∗d // // X f ,2 e W d ,2 rows star-es Y g Z a and g isos ⇒ e iso pointed context total context short 5 lemma = classical one short 5 lemma always true Lem. C star-regular short 5 lemma =⇒ short 5 lemma for regular epis Thm. C star-regular w/ enough trivial objs short 5 lemma ⇐⇒ short 5 lemma for regular epis Prop. C star-regular w/ enough trivial objs short 5 lemma =⇒ middle 3 × 3 lemma ⇐= extra condition 11 5. The middle 3 × 3 lemmas Def. f saturating KX N ker b ,2 X X f ∀f / N ker Y total context X X / 0 b regular epi /Y f pointed context 0 KY Y X f ,2 Y ,2 Y f regular epi Thm. C star-regular w/ enough trivial objs & saturating regular epis TFAE: (a) The middle 3 × 3 lemma holds (b) The short five lemma holds (c) The short five lemma for regular epis holds 12
© Copyright 2026 Paperzz