Introduction to Algorithms Elementary Graph Algorithms My T. Thai @ UF Outline Graph representation Graph-searching algorithms Breadth-first search Depth-first search Topological sort Strongly connected components My T. Thai [email protected] 2 Graphs Given a graph G=(V, E) V: set of vertices E: set of edges Types of graphs: Undirected: Directed: Weighted: each edge e has a weight w(e) Dense: Sparse: |E| = o(V2) |E| = O(|V|2) My T. Thai [email protected] 3 Representations of graphs Two common ways to represent for algorithms: Adjacency lists Adjacency matrix My T. Thai [email protected] 4 Adjacency lists Array Adj of |V| lists, one per vertex List of vertex u, Adj[u], include all vertices v such that If edges have weights, can put the weights in the lists My T. Thai [email protected] 5 Adjacency matrix Store adjacent matrix |V| × |V| matrix A = (aij ) If edges have weights, aij is the weight of edge (i, j) My T. Thai [email protected] 6 Adjacency lists vs Adjacency matrix Adjacency lists Adjacency matrix Space: Time: to list all vertices adjacent to u: Time: to determine if (u, v) ∈ E: My T. Thai [email protected] 7 Graph searching algorithms Visiting all the nodes in a graph in a particular manner following the edges of the graph Used to discover the structure of the graph Two common searching algorithms: Breadth-first search (BFS): visit the sibling nodes before visiting the child nodes (visit node layer by layer based on the distance to the root) Depth-first search (DFS): visit the child nodes before visiting the sibling nodes (follow the “depth” of the graph) My T. Thai [email protected] 8 Breadth-first search Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V Output: d[v] = distance (smallest # of edges, or shortest path) from s to v, for all v V such that (u, v) is last edge on shortest path s to v u is v’s predecessor Builds breadth-first tree with root s that contains all reachable vertices My T. Thai [email protected] 9 Breadth-first search Discover vertices in a wave manner from the source s First hit all vertices 1 edge from s, then vertices 2 edges from s … A vertex is discovered at the first time that it is encountered during the search. A vertex is finished if all vertices adjacent to it have been discovered. Colors the vertices to keep track of progress. White: Undiscovered. Gray: Discovered but not finished. Black: Finished. My T. Thai [email protected] 10 Queue Q contains all discovered but not finished vertices – gray vertices My T. Thai [email protected] 11 Example My T. Thai [email protected] 12 My T. Thai [email protected] 13 My T. Thai [email protected] 14 My T. Thai [email protected] 15 My T. Thai [email protected] 16 Analysis of BFS Initialization takes O(V) In while loop Each vertex is enqueued and dequeued at most once => total time for queuing is O(V) The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is (E) =>Total running time: O(V+E) linear in the size of the adjacency list representation of the graph My T. Thai [email protected] 17 Correctness of BFS Where is the shortest distance from s to v Proof (sketched): : If t is the sequence of vertices in the queue, then If v is reached from uMywhere d.u = T. Thai [email protected] => 18 Depth-first search Input: G = (V, E), directed or undirected. No source vertex given. Output: 2 timestamps on each vertex: d[v] = discovery time f [v] = finishing time [v] : predecessor of v = u, such that v was discovered during the scan of u’s adjacency list Build depth-first forest comprising several depth-first trees My T. Thai [email protected] 19 Depth-first search From a vertex v Follow an outgoing edge to explore Keep searching as deep as possible When all vertices reachable through the edge is explored, follow another outgoing edge of v When all vertices reachable from the original source are discovered, choose an undiscovered vertex as a new source then repeat the process My T. Thai [email protected] 20 Depth-first search white: undiscovered gray: discovered black: finished My T. Thai [email protected] 21 Example My T. Thai [email protected] 22 My T. Thai [email protected] 23 My T. Thai [email protected] 24 My T. Thai [email protected] 25 Analysis of DFS In DFS: loops on lines 1-2 & 5-7 take (V) time, excluding time to execute DFS-Visit DFS-Visit is called once for each white vertex vV when it’s colored gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing all DFS-Visit is vV|Adj[v]| = (E) Total running time of DFS is (V+E) My T. Thai [email protected] 26 Parenthesis Theorem Theorem 22.7 For all u, v, exactly one of the following holds: 1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u nor v is a descendant of the other. 2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u. 3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v d[u] < d[v] < f [u] < f [v] cannot happen Like parentheses: OK: ( ) [ ] ( [ ] ) [ ( ) ] Not OK: ( [ ) ] [ ( ] ) Corollary 22.8 v is a proper descendant of u if and only if d[u]<d[v]<f [v]<f [u] My T. Thai [email protected] 27 Example of parenthesis theorem My T. Thai [email protected] 28 Proof of Parenthesis Theorem W.l.g suppose d[u] < d[v], there are two cases: d[v] < f[u] v is discovered while u is gray v is descendant of u v is discovered more recently than u v is finished before the algorithm comes back and finishes u Interval [d[v], f[v]] is included in [d[u], f[u]] d[v] > f[u] d[v] < f[v] Two intervals [d[u], f[u]] and [d[v], f[v]] are disjoint My T. Thai [email protected] 29 White-path theorem Theorem 22.9 In a depth-first forest of a (directed or undirected) graph G =(V,E), vertex v is a descendant of vertex u if and only if at the time d[u] that the search discovers u, there is a path from u to v consisting entirely of white vertices. Proof: => at time d[u], all vertices on the path from u to v, including v are descendant of u Apply corollary 22.8, d[u] < d[v], these vertices are white at time d[u] <= Suppose there is a white path from u to v but v is not a descendant of u Let v’ the nearest vertex to u on the path s.t. v’ is not descendant of u w is the prior vertex of v’ on the path w is descendant of u d[u] < d[w] < d[v’] < f[v’] < f[w]< f[u] v’ is the descendant of u My T. Thai [email protected] 30 Classification of edges Tree edge: in the depth-first forest. Found by exploring (u, v) Back edge: (u, v), where u is a descendant of v Forward edge: (u, v), where v is a descendant of u, but not a tree edge Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees Theorem 22.10 In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge. My T. Thai [email protected] 31 Topological sort Directed acyclic graph (DAG) A directed graph with no cycles Good for modeling processes and structures that have a partial order, edge (u, v) represent order u>v Topology sort: make a total order of a given DAG such that vertex u appears before v if there is edge (u, v) My T. Thai [email protected] 32 Example Order for getting dressed My T. Thai [email protected] 33 Characterizing DAGs Lemma 2.11. A directed graph G is acyclic if and only if a depth-first search of G yields no back edges. Proof: ⇒: Show that back edge ⇒cycle Suppose there is a back edge (u, v) => v is ancestor of u in depthfirst forest => there is a path from v to u => there is a cycle ⇐: Show that cycle ⇒back edge Suppose G contains cycle c. Let v be the first vertex discovered in c, and let (u, v) be the preceding edge in c. At time d[v], vertices of c form a white path v to u By white-path theorem, u is descendant of v in depth-first forest =>(u, v) is a back edge. My T. Thai [email protected] 34 TOPOLOGICAL-SORT Running time: (V + E) My T. Thai [email protected] 35 Strongly connected components Given directed graph G = (V, E), a strongly connected component (SCC) of G is a maximal set of vertices C ⊆ V such that for all u, v ∈ C, there are paths both from u to v and from v to u My T. Thai [email protected] 36 Component Graph GSCC = (VSCC, ESCC). VSCC has one vertex for each SCC in G ESCC has an edge if there’s an edge between the corresponding SCC’s in G My T. Thai [email protected] 37 GSCC is a DAG Proof Suppose there is a path v v in G there are paths u u v and v v u in G u and v are reachable from each other, so they are not in separate SCC’s. My T. Thai [email protected] 38 Transpose of a Directed Graph GT = transpose of directed graph G GT = (V, ET), ET = {(u, v) : (v, u) E}. GT is G with all edges reversed. Can create GT in Θ(V + E) time if using adjacency lists. Observation: G and GT have the same SCC’s. (u and v are reachable from each other in G if and only if reachable from each other in GT.) My T. Thai [email protected] 39 Algorithm to compute SCCs Time: (V + E) My T. Thai [email protected] 40 Example My T. Thai [email protected] 41 How does it work? Idea: By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order. Because we are running DFS on GT, we will not be visiting any v from u, where v and u are in different components. Notation: d[u] and f [u] always refer to first DFS. Extend notation for d and f to sets of vertices U V: d(U) = minuU{d[u]} (earliest discovery time) f (U) = maxuU{ f [u]} (latest finishing time) My T. Thai [email protected] 42 SCCs and DFS finishing times Proof: Case 1: d(C) < d(C) Let x be the first vertex discovered in C. At time d[x], all vertices in C and C are white. => there exist paths of white vertices from x to all vertices in C and C. By the white-path theorem, all vertices in C and C are descendants of x in depth-first tree. By the parenthesis theorem, f [x] = f (C) > f(C). My T. Thai [email protected] 43 SCCs and DFS finishing times Proof: Case 2: d(C) > d(C) Let y be the first vertex discovered in C At time d[y], all vertices in C are white and there is a white path from y to each vertex in C all vertices in C become descendants of y Again, f [y] = f (C). At time d[y], all vertices in C are also white. By earlier lemma, since there is an edge (u, v), we cannot have a path from C to C => no vertex in C is reachable from y => at time f [y], all vertices in C are still white => for all w C, f [w] > f [y] => f (C) > f (C) My T. Thai [email protected] 44 SCCs and DFS finishing times Proof: (u, v) ET (v, u) E Since SCC’s of G and GT are the same, f(C) > f (C), by Lemma 22.14. My T. Thai [email protected] 45 Correctness When we do the second DFS, on GT, start with SCC C such that f(C) is maximum. The second DFS starts from some x C, and it visits all vertices in C. Corollary 22.15 says that since f(C) > f (C) for all C C, there are no edges from C to C in GT. => DFS will visit only vertices in C. => the depth-first tree rooted at x contains exactly the vertices of C. My T. Thai [email protected] 46 Correctness The next root chosen in the second DFS is in SCC C such that f (C) is maximum over all SCC’s other than C. DFS visits all vertices in C, but the only edges out of C go to C, which we’ve already visited. Therefore, the only tree edges will be to vertices in C. Each time we choose a root for the second DFS, it can reach only vertices in its SCC—get tree edges to these, vertices in SCC’s already visited in second DFS—get no tree edges to these. My T. Thai [email protected] 47 Summary Two common ways to represent a graph: adjacency lists and adjacency matrix. Choosing representation depends on: Type of graph: dense or sparse Type of operation that is used frequently in the problem adjacency lists saves more space than adjacency matrix BFS starts from a given source and computes the shortest paths from the source to other vertices. Some vertices may be not discovered BFS starts from an arbitrary vertex and discovers the whole graph to capture the graph’s structure My T. Thai [email protected] 48 Both BFS and DFS can provide a set of reachable vertices from a given vertex Topology sort is used to form the total order from partial orders Strongly connected components list all strongly connected components in their topology order BFS, DFS, Topology Sort, Strongly Connected Component run in linear time in term of the graph’s size My T. Thai [email protected] 49
© Copyright 2025 Paperzz