Math 1152 Assignment 8 Solutions DUE DATE: Mar.24,2017. Page 370 2) 0 Z (x + 1)3 dx −1 with n=5. P=[0, -0.2, -0.4, -0.6, -0.8, -1] Midpoints are -0.1, -0.3, -0.5, -0.7, -0.9. Width=0.2 f (x) = (x + 1)3 M5 = (0.2)[(0.9)3 + (0.7)3 + (0.5)3 + (0.3)3 + (0.1)3 ] = 0.245 = 49 200 8) Z 4 2 2 √ dx x with n=5. P=[2, 2.4, 2.8, 3.2, 3.6, 4] Midpoints are 2.2, 2.6, 3, 3.4, 3.8. 2 2 2 2 2 M5 = (0.4) √ +√ +√ +√ +√ = 2.3416313 2.2 2.6 3 3.4 3.8 Z 2 4 2 √ dx = 2 x Z 2 4 √ 4 4 x−1/2 dx = 2(2x1/2 )2 = 4x1/2 2 = 8 − 4 2 = 2.3431 12) Trapezoidal Rule Z π/2 sinxdx 0 with n=4. T4 = π/2 0 1 1 [ + 0.3827 + √ + 0.9239 + ] = 0.98713 4 2 2 2 1 k xk f(xk ) 0 0 0 1 π/8 2 π/4 0.3827 √ 1/ 2 3 3π/8 0.9239 π/2 4 1 14) Trapezoidal Rule Z 1 (1 − e−x )dx −1 with n=4. k xk f(xk ) 0 -1 -1.71828 1 -0.5 -0.64872 2 0 0 3 0.5 0.39346 4 1 0.632120 0.632120 2 −1.71828 + (−0.64872) + 0 + 0.39346 + = −0.399169 4 2 2 T4 = Z 1 −1 1 (1 − e−x )dx = (x + e−x )−1 = 1 + e−1 + 1 − e1 = −0.3504118 20) Z 8 2 1 dt lnt Midpoint Error Rule K(b − a)3 = 10−3 24n2 |f 00 (x)| ≤ K Note that, f0 = f 00 = −1 t(ln2 t) (lnt)2 + 2(lnt) lnt + 2 lnt 2 = 2 3 = 2 3 + 2 3 2 2 t(lnt) ) t ln t t ln t t ln t 2 Hence, K=2. K(b − a)3 = 10−3 24n2 2(8 − 2)3 = 10−3 24n2 n = 134.16 Thus, n=135. 22) Z 2 sinxdx 0 Trapezoidal Error Rule K(b − a)3 = 10−4 2 12n f (x) = sinx Note that, f 0 = cosx f 00 = −sinx Hence, in this case we can use k=2, or |f 00 (x)| ≤ k = 1. Thus, we have, K(2 − 0)3 = 10−4 3 12n If we use k=1, (2 − 0)3 = 10−4 2 12n 4 = 10−4 12n2 Hence, n=58. If we use k=2, 2(2 − 0)3 = 10−4 2 12n 8 = 10−4 12n2 Hence, n=82. Page 78 3 6) an = √ a0 = 1, √ a1 = 1/ 2 = 0.7071, 1 n+1 √ a2 = 1/ 3 = 0.5773, √ a3 = 1/ 4 = 1/2, √ √ a4 = 1/ 5 = 0.4472, and a5 = 1/ 6 = 0.4082 14) f (n) = 3e−0.1n a1 = 3e−0.1 , a0 = 1, a2 = 3e−0.2 , a3 = 3e−0.3 , a4 = 3e−0.4 , and a5 = 3e−0.5 22) 1 4 9 16 25 , , , , 5 10 17 26 37 The given sequence is an = a5 = 24) (n + 1)2 n2 + 4n + 5 36 49 64 81 , a6 = , a7 = , a8 = 50 65 82 101 π π π π π sin , −sin , sin , −sin , sin 2 4 6 8 10 The given sequence is an = (−1)n sin a5 = −sin π 2n + 2 π π π π , a6 = sin , a7 = −sin , a8 = sin 12 14 16 18 28) 1, 3, 5, 7, 9, ... The given sequence is an = 2n + 1 34) 1 −1 1 −1 1 , , , , , ... 2 8 18 32 50 4 The given sequence is an = (−1)n 2(n + 1)2 40) an = a0 = 0, 2n n+2 2 a1 = , 3 a4 = a2 = 1, 6 a3 = , 5 8 4 = 6 3 2n n 1 = 2 lim = 2 lim n→∞ n + 2 n→∞ n + 2 n→∞ 1 + lim 2 n Note that, lim 1 = 1 n→∞ lim (1 + n→∞ 2 )=1+0=1 n Thus, 1 2n = 2 lim n→∞ 1 + n→∞ n + 2 lim 44) 1 a0 = , 3 an = (−1)n n3 + 3 −1 , 4 a2 = a1 = a4 = Note that, limn→∞ 1 n3 2 n 1 =2 =2 1 1 , 11 a3 = −1 , 30 1 67 = 0. Thus, (−1)n 1 lim 3 =0 = lim 3 n→∞ n + 3 n→∞ n + 3 48) an = n2 a0 = 0, a1 = 1, a2 = 4, 5 a3 = 9, a4 = 16 lim an = lim n2 = ∞ n→∞ n→∞ Thus, an diverges as n goes to ∞, hence the limit does not exist. 50) an = a0 = 1, 1 n 1 1 a3 = , a4 = 8 16 1n = lim 2 n→∞ 2 1 a2 = , 4 1 a1 = , 2 lim 1 n n→∞ 2n Note that, lim 1n = 1 n→∞ lim 2n = ∞ n→∞ Thus, lim n→∞ 72) 1 n 2 = lim n→∞ 1n 2n =0 2 1 lim − 2 n→∞ n n +1 Note that, limn→∞ 1 n = 0. 1/n2 1 2 1 limn→∞ (1/n2 ) 2 − 2 = lim − lim = 2 lim − = ... lim n→∞ n n→∞ n n→∞ 1 + 1/n2 n→∞ n n +1 limn→∞ (1 + 1/n2 ) (limn→∞ n1 )(limn→∞ n1 ) 1 (0)(0) − = 2(0) − =0 1 1 n→∞ n 1 + (0)(0) 1 + (limn→∞ n )(limn→∞ n ) = 2 lim 76) lim n→∞ 3n2 − 5 n2 Using the fact, 1 1 3n2 − 5 = 3 − 5 n2 n n 1 Note that, limn→∞ 3 = 3 and limn→∞ n = 0. 1 1 1 1 3n2 − 5 lim = lim 3 − 5 = lim 3 − 5 lim ( = ... n→∞ n→∞ n→∞ n→∞ n2 n n n n 6 1 1 = lim 3 − 5 lim × lim = 3 − 5(0)(0) = 3 n→∞ n→∞ n n→∞ n 78) lim n→∞ Note that, n+2 n2 −4 lim n→∞ = n+2 (n−2)(n+2) = 1 n−2 as well, limn→∞ 1 n = 0. n+2 1 1/n limn→∞ (1/n) = lim = lim = = ... n→∞ n − 2 n→∞ 1 − 2/n n2 − 4 limn→∞ (1 − 2/n) = limn→∞ (1/n) 0 = =0 1 − 2 limn→∞ (1/n) 1 − (2)(0) 82) n + 3−n n lim n→∞ −n n+3 n Note that, n+2 n2 − 4 = 1 + ( 13 )n ( n1 ) As well, limn→∞ 1 = 1, limn→∞ ( 31 )n = 0, and limn→∞ ( n1 ) = 0. h h 1 i n + 3−n 1 n 1i 1 1 n 1 lim = lim 1+( ) × = lim 1+ lim ( ) × = lim 1+ lim ( )n × lim = ... n→∞ n→∞ n→∞ n→∞ n→∞ n→∞ n→∞ n 3 n 3 n 3 n = 1 + (0)(0) = 1 88) an+1 = 4 − 2an with a0 = 4 3 a1 = 43 , a2 = 34 , a3 = 34 , a4 = 43 , a5 = 4 3 7
© Copyright 2026 Paperzz