Chapter 11 Energy Method -- Utilize the Energy Method to solve engineering mechanics problems. -- Set aside the Equations of quilibrium 1. Introduction The relations between forces and deformation : Stress -- Ch 1 Fundamental concept of Strain – Ch 2 Strain Energy – Ch 11 We will learn: 1. Modulus of Toughness 2. Modulus of resilience 3. Castigliano Theorem 11.2 Strain Energy dU Pdx (11.1) U Pdx x1 0 Strain energy U Pdx x1 (11.2) 0 If the material response is elastic: U x1 0 1 2 kxdx kx1 2 P kx 1 U P1 x1 2 (11.3) 11.3 Strain-Energy Density x1 P dx U 0 A L V 1 U xd x 0 V 1 Strain energy density u x d x 0 (11.4) Modulus of Toughness = Toughness = area under the - curve. x E x u 1 0 u E 12 E x d x 2 12 (11.5) (11.6) (11.7) 2E uY Y2 2E Modulus of Resilience: (11.8) 11.4 Elastic strain Energy for Normal Stresses U u lim V 0 V dU u dV 1 u xd x 0 1 2 1 1 x2 u E x x x 2 2 2E (11.9) x E x 1 2 1 1 x2 u E x x x 2 2 2E U x2 2E dV P2 U dV 2 2 EA (11.9) (11.11) (11.12) P2 U dV 2 2 EA U L 0 P2 dx 2 AE dV Adx P2L U 2 AE (11.13) 11.5 Elastic Strain Energy for Shearing Stresses xy u xy d xy 0 (11.18) xy2 1 2 1 u G xy xy xy 2 2 2G dU u dV U xy2 2G or dV U udV (11.19) (11.20) (11.21) Strain Energy in Torsion xy2 T 2 2 U dV dV 2 2G 2GJ (11.19) dV dAdx U L 0 U L 0 T2 2 ( dA)dx 2 2GJ T2 dx 2GJ T 2L U 2GJ (11.21) (11.22) 11.6 Strain Energy for a General State of Stress 1 u ( x x y y z z xy xy yz yz zx zx ) 2 From Eq. (2.38) x y z xy u X E X E X E xy G y E y E z z y E yz E yz G (2.38) E z E zx zx G 1 1 2 ( x2 y2 z2 2 ( x y y z z x )] ( xy yz2 zx2 ) 2E 2G (11.26) (11.25) 1 1 2 2 2 2 u ( x y z 2 ( x y y z z x )] ( xy yz2 zx2 ) 2E 2G (11.26) If the principal stresses are used: 1 u ( a2 b2 c2 2 ( a b b c c a )] 2E Where a, b, c = the principal stresses (11.27) u uv ud (11.28) Where uv = the part of energy leading to volume change = hydrostatic stress ud = deviatoric energy = the part of energy leading to shape change. Defining Mean Stress or Average Stress a b c 3 (11.29) And set: a b ' a where = mean stress c ' b ' i + + 0 ' b ' c (11.30) = deviatoric stress Combining Eqs. (11-29) and (11.30) ' a ' c (11.31) a' + b' + c' 0 (11.31) -- They only change the shape, but do not lead to the change of the volume of the material. The dilatation, V/V, caused by the state of stress can be obtained, via Eq. (2.31) X y z 2 ( X y z ) e E E as 1 2 ' e ( a + b' + c' ) E or e=0 The uv can be obtained by substituting into Eq. (11.27) to obtain 1 3(1 2 ) 2 2 2 uv [3 2 (3 )] 2E 2E By means of Eq. (11.29) we have 1 2 uv ( a + b + c )2 6E (11.32) The distortion or deviatoric energy can be obtained as 1 ud u uv [3( a2 b2 c2 ) 6 ( a b b c c a ) 6E (1 2 )( a b c )2 ] After simplification: ud 1 [( a2 2 a b b2 ) ( b2 2 b c c2 ) ( c2 2 c a a2 )] 6E Recalling Eq. (2.43) E 1 2G or 1 1 2G E (2.43) Hence, the previous equation takes a new form 1 ud [( a b )2 ( b c )2 ( c a )2 ] 12G For 2-D cases, c 0 Eq. (11.33) reduces to 1 ud ( a2 a b b2 ) 6G For uniaxial tension, i.e. 1-D cases, b = 0 and a = y ( ud ) y y2 6G (11.33) (11.34) Substituting this equation to the previous equation, it leads to a2 a b b2 Y2 (7.26) Expanding the same operation to a 3-D case, one can have ( a b )2 ( b c )2 ( c a )2 2 Y2 (11.35) Replacing “<“ by “=“, it follows ( a b ) 2 ( b c ) 2 ( c a ) 2 2 Y2 This is a circular cylinder of radius 2 / 3 y (11.36) The 2- D Yield Locus: a b 2 a 2 b 2 Y (7.26) The 3- D Yield Locus: ( a b )2 ( b c )2 ( c a )2 2 Y2 (11.35) 11.7 Impact Loading 1 2 K. E. of the ball = K. E. = mvo 2 The strain energy in the bar: Um m2 2E dV (11.37) Assuming: 1. No heat dissipation 2. The ball sticks with the rod after impact. 1 2 U m K . E . mv0 2 (11.38) If the stress is uniform within the rod: Um m2 2E dV m2 V 2E Therefore, m can be determined as: 2U m E mv02 E m V V (11.39) 11.8 Design for Impact Loads Case A: For a Uniform-Diameter Rod: m 2U m E V (11.45a) Case B: For a Multiple-Section Rod: L L L V 4 A A 5 A 2 2 2 m 8U m E V (11.45b) Case C: For a Circular Cantilever Rod: m 6U m E L( I / c )2 (11.44) 1 4 I c 4 However, Hence, 1 4 2 1 2 1 L( I / c ) L( c / c ) c L V 4 4 4 2 Eq. (11.44) can be reduced to 24U m E m V (11.45c) Since m E V We conclude that: --- in order to develop lower m in the rod, the rod should have 1. Lower E 2. Larger V 3. Uniform m 11.9 Work and Energy under a Single Load Case A: For an Uniaxial Load: Strain energy U Pdx x1 (11.2) 0 1 U P1 x1 2 (11.3) Case B: For a Cantilever Beam: 1 U P1 y1 2 1 P1 L3 P12 L3 U P1 ( ) 2 3 EI 6 EI (11.46) Case C: For a Beam in Bending: U 1 0 1 Md M11 2 1 M1 L M12 L U M1 ( ) 2 EI 2 EI (11.47) (11.48) Case D: For a Beam in Torsion: U 1 0 1 Td T11 2 1 T1 L T12 L U T1 ( ) 2 JG 2JG (11.49) 11.10 Deflection under a Single Load by the Work-Energy Method Case A: For an Uniaxial Load: 1 U P1 x1 2 2U x1 P1 (11.3) where x1 = deflection due to P1 Case B: For a Beam in Bending: 1 U M11 2 2U 1 M1 (11.47) where 1 = deflection due to single moment M1 11.11 Work and Energy under Several Loads Deflection due to P1: x11 11 P1 x21 21 P1 (11.54) Deflection due to P2: x12 12 P2 x22 22 P2 (11.54) ij = influence coefficients The combining effect of P1 and P2 x1 x11 x12 11 P1 12 P2 x2 x21 x22 21P1 22 P2 (11.54) (11.54) Calculating the Work Done by P1 and P2: Case I: Assuming P1 is applied first --At Point 1, the work done by P1 is 1 1 1 P1 x11 P1 (11 P1 ) 11 P12 2 2 2 (11.58) At Point 2, the work done by P1 is zero. P2 is applied next --At Point 2, the work done by P2 is 1 1 1 P2 x22 P2 ( 22 P2 ) 22 P22 2 2 2 (11.59) At Point 1, the work done by P1 due to additional defection [caused by P2] is P1 x12 P1 (12 P2 ) 12 P1 P2 (11.60) (11.58) + (11.59) + (11.60), the total strain energy is 1 U (11 P12 212 P2 P1 22 P22 ) 2 (11.61) Case II: Assuming P2 is applied first --1 U ( 22 P22 212 P2 P1 11 P12 ) 2 (11.62) Equating Eqs. (11.61) and (11.62) leads to 12 12 -- Maxwell Reciprocal Theorem 11.12 Castigliano’s Theorem 1 U (11 P12 212 P2 P1 22 P22 ) 2 U 11 P1 12 P2 x1 P1 U 12 P1 22 P2 x2 P2 (11.61) (11.63) (11.64) Or, in general U xj Pj (11.65) U j M j (11.66) [ Castigliano’s Theorem ] General Formulation for Castigliano’s Theorem For multiple loading, P1, P2, …., Pn the deflection of the point of application of Pi can be expressed as x j jk Pk (11.66) k The total strain energy of the structure is 1 U ik Pi Pk 2i k (11.67) Differentiating U w.r.to Pj U 1 1 jk Pk ji Pi Pj 2 k 2 i Since ij = ji, the above equation becomes U 1 1 jk Pk ji Pi jk Pk k Pj 2 k 2 i (11.65) xj U Pj -- for concentrated loads j U M j -- for moment loads U j T j -- for torsion 11.13 Deflections by Castigliano’s Theorem Total strain energy of a beam subjected to bending U L 0 M2 dx 2 EI (11.17) But, the differentiation can be applied prior to integration. Deflection at point Pj L M M U xj dx 0 EI P Pj j (11.70) Total strain energy of a truss member Fi 2 Li U i 1 2 Ai E n (11.71) Deflection at point Pj U n Fi Li Fi xj Pj i 1 Ai E Pj (11.72) If no load is applied to a point, where we desire to obtain a deflection: -- Apply a dummy (fictitious) load Q at that point, determine U xj Q j Then, set Q = 0. [ Castigliano’s Theoem ] (11.76) 11.14 Statically Indeterminate Structures Structure indeterminate to the 1st degree: Procedures: 1. Assume one support as redundant 2. Replace it with an unknown force 3. y = U/RA = 0 solving for RA L M M U yA dx 0 R A EI RA 1 M RA x wx 2 2 M x RA 1 L 1 3 2 yA ( RA x wx )dx 0 EI 2 1 RA L3 wL4 ( )0 EI 3 8 3 3 RA wL RA wL 8 8 5 1 RB wL M B wL2 8 8
© Copyright 2026 Paperzz