การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 121 การคัดเลือกวัตถุดบิ ที่เป็ นกลยุทธ์ ด้านการจัดซื้อด้ วยเทคนิคการสร้ างสถานการณ์ จาลอง กรณีศึกษาโรงงานตัดเย็บเสื้อผ้า Using Simulation Techniques to Identify Strategic Sourcing Items: case study of a garment factory สายธาร กลิน่ ลูกอิน Saithan Kinloogin สาขาการจัดการโลจิสติกส์ บัณฑิตวิทยาลัยการจัดการและนวัตกรรม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี [email protected] ธนัญญา วสุ ศรี Thananya Wasusri สาขาการจัดการโลจิสติกส์ บัณฑิตวิทยาลัยการจัดการและนวัตกรรม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี [email protected] บทคัดย่ อ ปั จจุบนั การดาเนิ นงานทางธุรกิจได้เปลี่ยนแปลงไปอย่างรวดเร็ ว การมีกรอบข้อตกลงทางการค้า (Free Trade Agreement) ที่ ทาในลักษณะทวิภาคี หรื อกรอบการตกลงการค้าขององค์กรการค้าโลก (World Trade Organization, WTO) ร ว ม ทั้ ง ก า ร พั ฒ น า อ ย่ า ง ร ว ด เ ร็ ว ข อ ง ร ะ บ บ เ ท ค โ น โ ล ยี สื่ อ ส า ร ท า ใ ห้ ก า ร ด า เ นิ น ธุ ร กิ จ ต้ อ ง มี ก า ร ป รั บ เ ป ลี่ ย น ก ล ยุ ท ธ์ อ ย่ า ง ร ว ด เ ร็ ว เพื่ อ ให้ ส ามารถรั ก ษาหรื อ เพิ่ ม ความสามารถทางการแข่ ง ขัน ที่ นั บ วัน จะทวี ค วามรุ น แรงขึ้ นอย่า งรวดเร็ ว ได้ อุ ต สาหกรรมสิ่ ง ทอเป็ นอุ ต สาหกรรมหนึ่ งที่ จ ะได้รั บ อิ ท ธิ พ ลต่ อ ปั จจัย ต่ า ง ๆ ไม่ ว่ า จะเป็ นกรอบการค้า เสรี รวมทั้ งการเปิ ดตลาดสิ่ ง ทอของจี น ที่ มี ต ้น ทุ น ต่ า กว่ า ดัง นั้ นอุ ต สาหกรรมสิ่ ง ทอ จึ ง มี ค วามจ าเป็ นที่ จ ะต้อ ง เพิ่มประสิ ทธิ ภาพในการแข่งขันโดยการนาเอาการจัดการโลจิสติกส์และโซ่อุปทานที่เป็ นกลยุทธ์การบริ หารจัดการที่จั ดได้วา่ เป็ นกลยุทธ์ที่ช่วยเพิ่มความสามารถในการแข่งขันเข้ามาประยุกต์ใช้ ง าน วิ จั ย นี้ เป็ น ส่ ว น ห นึ่ ง ข อ ง โ ค ร ง ก าร น าร่ อ ง ข อ ง ส ถ าบั น พั ฒ น าอุ ต ส าห ก ร ร ม สิ่ ง ท อ โ ด ย เ ป็ น ก า ร น า เ อ า เ ท ค นิ ค ก า ร จ า ล อ ง ส ถ า น ก า ร ณ์ (Simulation) ม าใ ช้ ใ น ก าร คั ด เลื อ ก วั ต ถุ ดิ บ ที่ จ ะ เป็ น ก ล ยุ ท ธ์ ใ น ก าร ส ร้ าง โ ซ่ อุ ป ท าน ข อ ง โ ร ง ง าน ตั ว อ ย่ าง ผลที่ได้จากการจาลองสถานการณ์ทาให้เห็นถึงปั จจัยหรื อวัตถุดิบที่มีผลกระทบต่อระยะเวลาในการส่งมอบผลิตภัณฑ์ คาหลัก การสร้างสถานการณ์จาลอง กลยุทธ์จดั ซื้อ อุตสาหกรรมสิ่ งทอ 122 การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 Abstract Nowadays, the way we do businesses is rapidly changing. Free Trade Area Agreement, World Trade Organization Agreement and fast changing of information technology systems have led to the era of globalization. As a result, organizations need to quick response to the fast changing factors in order to stay competitive in businesses. Textile industry has affected not only by those factors–Free Trade Area Agreement, information technology–, but also by the low cost of China’s textile products. Thus, Thai textile industry needs to be improved. Logistics and Supply Chain Management can be said as a strategy that can be used to improve competitive advantages This research is a part of the pilot project of Supply Chain Management Implementation funded by Thailand Textile Institute (THTI). The objective of this research is mainly to select strategic sourcing items in order to set up a supply chain connection with respect to total lead time reduction and simulation technique was selected as a tool. Keywords: Simulation, Supply Strategy, Textile Industry 1. Introduction In today’s highly competitive market enterprises face a rapidly changing world, more global competition, including the free trade pressures. To survive in the competitive market, the manufacturers cope with the challenge of reduction in delivery lead time, product cost, service cost and inventory cost. Moreover, the challenges of manufacturers are shifting from internal efficiency to Supply Chain efficiency. A significant competitive advantage could not obtain by improving the efficiency of products and processes alone, the manufacturers need to improve the efficiency of product, process and supply chain (Olhager and Selldin, 2004, Fine, 1998). Ballou (2004) stated that supply chain management is the integration of activities –the flow and transformation of goods from the raw materials through to the end user, as well as the associated information flows–through improved supply chain relationships, to achieve a sustainable competitive advantage. To adopt a SCM strategy means enterprises along a logistic network act together in a collaborative environment, pursuing common objectives and exchanging continuously information in order to reduce uncertainties such as demand, process, administrative and decision processes and inherent uncertainties (Reiner and Trcka (2004), Terzi and Cavalieri (2004)). The Logistics and Supply Chain Management concept has started to be widely introduced and promoted in many educational journals, conferences, and workshops in order to set common standard and best practices. The Thai government also realizes the importance of Logistics and Supply Chain Management concept, which is evidenced in the Information and Communication Technology (ICT) Policy of Thailand 2002–2007 under the 6th national strategic plan. It is also indicated that the textile and clothing business is one of the industrial targets we need to emphasize. As a result, this pilot project was initiated, supported by the Thailand Textile Institute, Ministry of Industry. The aims of this paper are to identify factors or sourcing items affecting supply chain performances of a garment industry and later on to design an appropriate supply strategies leading to lead time reduction for the garment การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 123 2. Literature review To design supply chain strategies and practices, it was found that simulation has been used as a tool as it is possible to reproduce and to test different decision–making alternatives upon more possible foreseeable scenarios, in order to ascertain in advance the level of optimality and robustness of a given strategy (Terzi and Cavalieri, 2004). Many researchers have applied simulation to design and evaluate supply chain strategies and operations. Naim and Berry (1996) showed the use of simulation to describe the dynamic implications of various supply chain redesign strategies adopted by a major European manufacturer of personal computers. Cheng and Duran (2004) presented a decision support system to investigate and improve the combined inventory and transportation system of a world–wide crude oil transportation. An integration of discrete event simulation and stochastic optimal control of the inventory/transportation system were applied. Reiner and Trcka (2004) pointed out that an analysis of a supply chain must be very specific. They developed a discrete event simulation to analyze performances in different supply chain strategies. Chang and Makatsoris (2001) noted that to achieve high quality, low cost with minimal lead time, companies need to have a better visibility into the entire supply chain. Developing simulation models of a supply chain can give a better understanding of the supply chain characteristics. Simulation can also deliver powerful what–if analyses to companies leading to better planning decisions. In addition to these, Terzi and Cavalieri (2004) made a comprehensive reviewed on more than 80 articles. They concluded that simulation tools are more suitable and deriving useful prescriptions both for practitioners and researchers on its applicability in decision-making processes within the supply chain context. It can be seen that simulation is a very useful tool for designing a supply strategy. We therefore selected the ARENA–a discrete event simulation tool–to gain a better understanding of the garment industry and to identify strategic sourcing items. 3. Research Methodology The research objective was to discover factors or sourcing items influencing the supply chain performance which is lead time performance. To achieve the research objective, simulation was then conducted. The procedures for the simulation study of supply chain management are as follows: Understanding business process of the garment Design scenario to achieve the lead time performance Conduct simulation modeling 4. Understanding business process The garment industry is a Made to Order (MTO) producer. It produces lady and children cloth which are fashion and mass customized. Nowadays, it is hardly to have a repeated order because the product life cycle becomes shorter as a result of highly competitive in global textile industry. Therefore, the garment must be very flexible for the fast changing environment. The customer has sent its requirements to the garment 6 months before a new season starts. The requirements are included of product specifications, quantity in total, colors and delivery date. The customer keeps updating on the amounts and colors until a week before placing an order. The requirements will 124 การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 then be certain. Therefore, the requirement of colors and quantity for each size are known at that time, but the information will not be given to its suppliers until the garment will be placed orders by its customers. The business flow of the garment can be shown in figure 1. Customer place order Place P/O Wait for Packaging Wait for Accessories Wait for Fabric Cutting Sewing Wait for Printing Packaging Figure 1 the Garment’s Business Flow The garment business flow starts from the arrival of customer orders. After the orders arrive, purchasing orders will be established and sent to suppliers such as fabric supplier, packaging supplier, accessories supplier and printing supplier. The production can really start when fabric arrives at the garment. If the fabric is needed to be printed, the fabric will be cut and sent to the printing supplier. When the fabric is printed, sewing process can then start. However, sewing accessories such as zip, button and label have to be matched together before starting the sewing process. After finishing the sewing process, packaging can then be started. In conclusion, there are 5 sources of delay time in sourcing process that are waiting for fabric, waiting for printing, waiting for accessories, waiting for packing and packaging process. Those 5 sources of delay time directly affect the total lead time. Therefore, we need to identify which one has the most influence on the total lead time. 5. Design Scenario Five business strategies were proposed in order to do what–if simulation to find out strategic sourcing items that could reduce total lead time for the garment. The five business strategies are involved with 7 main factors that are waiting for fabric, cutting process, waiting for printing, waiting for accessories, sewing process, waiting for packing and packaging process. The five strategies can be summarized in table 1. การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 Strategy 1 2 3 4 5 125 Table 1 Five Business Strategies Description As–Is process to investigate total lead time Implement supplier relationship management on fabric and reduce waiting for fabric by 10%, 20% and 30% Implement supplier relationship management on printing and reduce waiting for printing by 10%, 20% and 30% Implement supplier relationship management on packing and reduce waiting for packing by 10%, 20% and 30% Implement supplier relationship management on accessories and reduce waiting for accessories by 10%, 20% and 30% Strategy 1 is the as–is strategy that are no supplier improvement program and no effort to evaluate or persuade its suppliers to achieve better lead time. The concentration of the garment is only to reduce time at sewing process. The other strategies are to investigate what is the main source that has the most impact on total lead time. In other words, we can prioritize the job that we should conduct at a time. Strategy 2 is to find out the impact of fabric on the total lead time by assuming that supplier relationship management (SRM) is applied and SRM could lead to fabric delay time reduced by 10%, 20% and 30% respectively. Strategy 3 is to investigate the effect of printing time at a supplier source. Strategy 4 and 5 are to investigate the effect of waiting time for packing and waiting time for accessories on total lead time respectively. All strategies were investigated their effect on total lead time by reducing their delay time by 10%, 20% and 30% respectively. 6. Simulation study Arena–a discrete event simulation–has been selected as a tool. The simulation construction was started from gathering data from the garment. The period of time that are of our interest is during a high season of the garment ranging from June to December. The real data from the garment such as customer orders, sewing process time, cutting process time and so on are fitted distributions by Input Analyzer Module of Arena. Then, the simulation program was constructed and it was verify by ARENA’s check module to find whether or not there is a syntax error. One piece flow was then used to see if the entity flow through the process as we had expected it. Lastly, comparison the results between the simulation run and real data are our ways to validate the program. The input analyzer example is shown on figure 2. The input analyzer module gives us Chi–Square goodness of fit test. If p-value of the test is higher than = 0.05, we will use the proposed distribution. If the module cannot provide p-value higher than 0.05, we will use an empirical distribution. 126 การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 Figure 2 The Input Analyzer After we identified all input data, we developed a simulation program as shown in figure 3. We then run the simulation for 10 replication and each replication for the high season period (June–December). We get average total lead time equals to 113.37 days with half width equals to 3.80. With the half width of 3.80, it is our acceptable value. Therefore, 10 replication run is enough for our study. Figure 4 shows results from our AS–IS run. Figure 3 The Arena Program Construct การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 127 Figure 4 The results of As-Is run 7. Results Our as–is simulation run indicates that average total lead time is 113.37 days. We then reduce the delay time of fabric, printing, packaging and accessories according to table 1. The comparison of the time reduction by 10% of each strategy can be seen in table 2. Table 2 The Comparison of 10% reduction on each strategy Strategy Base Total Reduced Total Total % of Case Lead 10% Lead Lead Reduction Time Time Time Reduced 2 : fabric 73 113 66 107 6 5% 3: Printing 7 113 6 112 1 1% 4:Packaging 63 113 57 113 0 5:Accessories 65 113 59 113 0 From table 2, it can be seen that 10% reduction of fabric can reduce total lead time by 5%. If strategy 3 was implemented with 10% lead time reduction, total lead time would be reduced by 1%. However, the reduction of lead time in waiting packaging and lead time in waiting accessories do not have any impacts on total lead time. We then run the simulation again with reduce lead time by 20% for the four strategies. The results show in table 3. 128 การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 Table 3 The Comparison of 20% reduction on each strategy Strategy Base Total Reduced Total Total % of Case Lead 10% Lead Lead Reduction Time Time Time Reduced 2 : fabric 73 113 58 99 14 12% 3: Printing 7 113 5 111 2 2% 4:Packaging 63 113 50 113 0 5:Accessories 65 113 52 113 0 It can be seen from table 3 that reduction time on packaging lead time and accessories lead time do not affect on total lead time. Fourteen days can be reduced, if we could reduced fabric sourcing lead time by 20%. Waiting time for printing has small impacts on total lead time, as 20% of total lead time could be reduced when a 20% of reduction on waiting time for printing is conducted. Finally, the 30% of lead time reduction at each source was simulated. Table 4 also indicates that waiting time for fabric directly affects on total lead time. Waiting for packaging, waiting time for accessories do not affect on total lead time. Table 4 The Comparison of 30% reduction on each strategy Strategy Base Total Reduced Total Total % of Case Lead 10% Lead Lead Reduction Time Time Time Reduced 2 : fabric 73 113 51 95 18 16% 3: Printing 7 113 4 110 3 3% 4:Packaging 63 113 44 113 0 5:Accessories 65 113 46 113 0 - 8. Conclusion From the simulation environment, we reduce the lead time at each source independently at a time. The main reason of conducting the environment is to identify strategic sourcing items. The simulation results suggest us that reduction of time in packaging sourcing time or accessories sourcing time alone will not be beneficial on total lead time. Fabric is the main sourcing item that we should concentrate and supplier improvement program or supplier relationship management program should be started for fabric supplier. To implement supplier relationship management program, we can divide the program into three phases. First phase, we call it “pre–transaction” phase. This phase is to setup supply strategy. Strategic sourcing items and strategic suppliers will be defined in this phase. Supplier improvement program and supplier certification program will be also conducted at this stage. Then, at the end of phase one, the strategic sourcing items and strategic suppliers will be identified. The second stage (product development phase) will concern on research and development with the strategic suppliers in order to improve quality and service to the end customer of the supply chain. Third stage (order fulfillment phase) is implementation of information technology in order to book or reserve the supplier capacity. The last stage (post transaction phase) is to evaluate the strategic suppliers or the strategic items. การประชุมวิชาการ : การวิจยั ดาเนินงาน ประจาปี 2548 129 References Ballou, R.H. (2004), Business Logistics/ Supply Chain Management. Prentice Hall. Berry, D. and Naim, M.M. (1996), “Quantifying the relative improvements of redesign strategies in a P.C. supply chain”, International Journal of Production Economics, 46–47, pp 181–196. Chang, Y. and Makatsoris, H. (2001), “Supply chain modeling using simulation”, International Journal of Simulation, 2, pp 24–30. Cheng, L. and Duran, M. (2004), “Logistics for world-wide crude oil transportation using discrete event simulation and optimal control”, Computers and Chemical Engineering, 28, pp 897–911. Fine, C.H. (1998), Clockspeed : Winning Industry Control in the Age of Temporary Advantage, Perseus Books. Reiner, G. and Trcka, M. (2004), “Customized supply chain design”, International Journal of Production Economics, 89, pp 217–229. Olhager, J. and Selldin, E. (2004), “Supply chain management survey of Swedish manufacturing Firms”, International Journal of Production Economics, 89, pp 353–361. Terzi, S. and Cavalieri, S. (2004), “Simulation in the supply chain context : a survey”, Computer in Industry, 53, pp 3–16.
© Copyright 2026 Paperzz