Cooperation on the Multiple-Access Channel X1,t M1 (M̂1 , M̂2 ) Yt Tx1 Channel X2,t M2 Rx Tx2 Michèle Wigger ETH Zurich, [email protected] Chalmers University of Technology, 21 October 2008 Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung Based on Collaborations with Amos Lapidoth and Shraga I. Bross Multiple-Access Channel (MAC): Many-to-One M1 X1,t Yt Tx1 (M̂1 , M̂2 ) Channel M2 X2,t Tx2 Rx No transmitter cooperation (classical MAC) I Each transmitter knows only its own message I Joint code design I Time-sharing 2 /23 Multiple-Access Channel (MAC): Many-to-One M1 , M2 X1,t Yt Tx1 (M̂1 , M̂2 ) Channel X2,t M1 , M2 Tx2 Rx Full transmitter cooperation I Both transmitters know both messages I Joint encodings of messages 2 /23 Multiple-Access Channel (MAC): Many-to-One M1 C21 X1,t Yt Tx1 C12 (M̂1 , M̂2 ) Channel X2,t M2 Tx2 Rx In this talk: partial transmitter cooperation 1. MAC with conferencing encoders (e.g. closely located transmitters) I Before transmission, Txs communicate over rate-limited bit-pipes I Txs can communicate parts of their messages to other Tx I ⇒ Txs can cooperate based on pipe-outputs 2 /23 Multiple-Access Channel (MAC): Many-to-One M1 X1,t Yt Tx1 X2,t (M̂1 , M̂2 ) Channel M2 Tx2 Rx In this talk: partial transmitter cooperation 2. MAC with imperfect feedback (e.g. uplink/downlink scenarios) I Txs observe (noisy) feedback from channel outputs I Cooperation? Past channel outputs give information about both messages I ⇒ Txs can cooperate in future transmissions 2 /23 Capacity Region for Two-User MAC M2 ∼ U{1, . . . , b2nR2 c} I M1 ∼ U{1, . . . , b2nR1 c}, I n: block-length of transmission I R1 , R2 : rates of transmission I Capacity C: closure of set of pairs (R1 , R2 ) for which ∃ block-length n schemes such that p(error) → 0 R2 C n → ∞. R1 3 /23 Additive White Gaussian Noise (AWGN) MAC M1 Transmitter 1 X1,t Yt + Receiver (M̂1 , M̂2 ) X2,t M2 Transmitter 2 I Yt = X1,t + X2,t + Zt , I {Zt } ∼ IID N (0, N ) I Power constraints: Zt t ∈ {1, . . . , n} 1 n Pn t=1 £ 2 ¤ E Xν,t ≤ Pν , ν ∈ {1, 2} 4 /23 Additive White Gaussian Noise (AWGN) MAC M1 Transmitter 1 X1,t Yt + Receiver (M̂1 , M̂2 ) X2,t M2 Transmitter 2 Zt No transmitter cooperation (classical MAC) CNoCoop = (R1 , R2 ) : ≤ R1 R2 ≤ R1 + R2 ≤ ¢ P1 1 2 log 1 + N ¢ ¡ P2 1 2 log 1 + N ¡ ¢ P1 +P2 1 log 1 + 2 N ¡ R2 CNoCoop R1 5 /23 Additive White Gaussian Noise (AWGN) MAC M1 , M2 Transmitter 1 Yt X1,t + Receiver (M̂1 , M̂2 ) X2,t M1 , M2 Transmitter 2 Zt R2 Full transmitter cooperation ( CFullCoop = CFullCoop (R1 , R2 ) : √ µ ¶) P1 + P2 + 2 P1 P2 1 R1 + R2 ≤ log 1 + 2 N CNoCoop R1 5 /23 What about Partial Transmitter Cooperation? Goal: Capacity of settings with partial transmitter cooperation! I CNoCoop ⊆ CPartialCoop ⊆ CFullCoop I Are inclusions strict? I Does partial coop. help at all? I Is partial coop. ≈ full coop.? R2 CFullCoop ⇒ Important design issues I CPartialCoop CNoCoop R1 We consider two scenarios: I AWGN MAC with Conferencing Encoders I AWGN MAC with Feedback 6 /23 Part 1: AWGN MAC with Conferencing Encoders 7 /23 AWGN MAC with Conferencing Encoders M1 - X1,t Transmitter 1 V1,k M2 - @ 6 V2,k ? X2,t Transmitter 2 ¡ Zt R? @ i µ ¡ Receiver (M̂1 , M̂2 ) - 1. phase: Conference (Willems’83): I I I κ sequential uses of the perfect bit-pipes ¢ ¢ (κ) ¡ (κ) ¡ V1,k = f1,k M1 , V2k−1 V2,k = f2,k M2 , V1k−1 Rate-limitations: κ X k=1 log |V1,k | ≤ nC12 and κ X k=1 log |V2,k | ≤ nC21 8 /23 AWGN MAC with Conferencing Encoders M1 - X1,t Transmitter 1 V1,k M2 - @ 6 V2,k ? X2,t Transmitter 2 ¡ Zt R? @ i µ ¡ Receiver (M̂1 , M̂2 ) - 2. phase: Transmission over channel (n) X1,t = ϕ1,t (M1 , V2κ ) (n) X2,t = ϕ2,t (M2 , V1κ ) 8 /23 Main Result for Conferencing Encoders Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders CConf= µ ¶ P1 (1−ρ21 ) 1 R ≤ log 1 + + C 1 12 2 σ2 µ ¶ 2 P2 (1−ρ2 ) 1 [ R2 ≤ log 1 + + C 21 2 N (R1 , R2 ) : ¶ µ P1 (1−ρ21 )+P2 (1−ρ22 ) ρ1 ,ρ2 + C12 + C21 R1 + R2 ≤ 12 log 1 + ∈[0,1] N ³ ´ √ P +P +2ρ ρ P P 1 1 2 1 2 1 2 R1 + R2 ≤ log 1 + 2 N 9 /23 Main Result for Conferencing Encoders Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders CConf= µ ¶ P1 (1−ρ21 ) 1 R ≤ log 1 + + C 1 12 2 σ2 µ ¶ 2 P2 (1−ρ2 ) 1 [ R2 ≤ log 1 + + C 21 2 N (R1 , R2 ) : ¶ µ P1 (1−ρ21 )+P2 (1−ρ22 ) ρ1 ,ρ2 + C12 + C21 R1 + R2 ≤ 12 log 1 + ∈[0,1] N ³ ´ √ P +P +2ρ ρ P P 1 1 2 1 2 1 2 R1 + R2 ≤ log 1 + 2 N If and only if C12 = C21 = 0 R2 CFullCoop CConf CNoCoop R1 9 /23 Main Result for Conferencing Encoders Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders CConf= µ ¶ P1 (1−ρ21 ) 1 R ≤ log 1 + + C 1 12 2 σ2 µ ¶ 2 P2 (1−ρ2 ) 1 [ R2 ≤ log 1 + + C 21 2 N (R1 , R2 ) : ¶ µ P1 (1−ρ21 )+P2 (1−ρ22 ) ρ1 ,ρ2 + C12 + C21 R1 + R2 ≤ 12 log 1 + ∈[0,1] N ³ ´ √ P +P +2ρ ρ P P 1 1 2 1 2 1 2 R1 + R2 ≤ log 1 + 2 N R2 If C12 , C21 6= 0, but “small” CFullCoop If C12 > 0 or C21 > 0 C12 CConf CNoCoop ⊂ CConf CNoCoop strictly! C21 R1 9 /23 Main Result for Conferencing Encoders Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders CConf= µ ¶ P1 (1−ρ21 ) 1 R ≤ log 1 + + C 1 12 2 σ2 µ ¶ 2 P2 (1−ρ2 ) 1 [ R2 ≤ log 1 + + C 21 2 N (R1 , R2 ) : ¶ µ P1 (1−ρ21 )+P2 (1−ρ22 ) ρ1 ,ρ2 + C12 + C21 R1 + R2 ≤ 12 log 1 + ∈[0,1] N ³ ´ √ P +P +2ρ ρ P P 1 1 2 1 2 1 2 R1 + R2 ≤ log 1 + 2 N If and only if ³ C12 , C21 ≥ 21 log 1 + ´ √ P1 +P2 +2 P1 P2 N R2 CFullCoop CConf CNoCoop R1 9 /23 Achievability (Inner Bound) I Transmitters split messages: M1 = (M1,c , M1,p ) and M2 = (M2,c , M2,p ) I Conference: Transmitters exchange M1,c and M2,c over bit-pipes I Rate of M1,c < C12 and rate of M2,c < C21 I Transmitters use Gaussian codebooks and add up codewords for transmission over AWGN MAC I Successive decoding at the receiver No superposition encoding and joint decoding necessary! ⇒ easier than Willems’s scheme 10 /23 Converse (Outer Bound) I Converse as in Willems’83, but accounting for power constraints: CConf ⊆ where RX1 ,U,X2 [ X1 (− −U (− −X2 E[X12 ]≤P1 , E[X22 ]≤P2 R1 R2 , (R1 , R2 ) : R + R2 1 R1 + R2 ≤ ≤ ≤ ≤ RX1 ,U,X2 I(X1 ; Y |X2 U ) +C12 I(X2 ; Y |X1 U ) +C21 I(X1 X2 ; Y |U ) +C12 +C21 I(X1 X2 ; Y ) Propose technique to prove: Suffices to take union over Gaussian Markov Triples X1G (− −U G (− −X2G Traditional Max-Entropy techniques fail because of Markov condition! 11 /23 Technique also Applies to Cover-Leung Region M1 M2 - - X1,t Transmitter 1 @ X2,t Transmitter 2 ¡ Zt R? @ i µ ¡ Yt - Receiver (M̂1 , M̂2 ) - 6 Achievable region for AWGN MAC with perfect partial or perfect feedback RCL , [ X1 (− −U (− −X2 E[X12 ]≤P1 , E[X22 ]≤P2 (R1 , R2 ) : R1 ≤ I(X1 ; Y |X2 U ) R2 ≤ I(X2 ; Y |X1 U ) R1 + R2 ≤ I(X1 X2 ; Y ) Suffices to take union over Gaussian Markov triples X1G (− −U G (− −X2G ! 12 /23 Technique also Applies to Slepian-Wolf Region M1 - X1,t Transmitter 1 @ M0 M2 - X2,t Transmitter 2 ¡ Zt R? @ i Yt - Receiver (M̂0 , M̂1 , M̂2 ) - µ ¡ Capacity region for AWGN MAC with common message RSW R1 [ R2 (R , R ) : , R1 + R2 1 2 X1 (− −U (− −X2 2 R + R1 + R2 0 E[X1 ]≤P1 , E[X22 ]≤P2 ≤ ≤ ≤ ≤ I(X1 ; Y |X2 U ) I(X2 ; Y |X1 U ) I(X1 X2 ; Y |U ) I(X1 X2 ; Y ) Suffices to take union over Gaussian Markov triples X1G (− −U G (− −X2G ! 13 /23 Dirty-Paper MAC with Conferencing Encoders M1 - ? Transmitter 1 - @ 6 V1,k M2 St X1,t V2,k ? X2,t Transmitter 2 ¡ Zt ? R? @ i- i µ ¡ - Receiver (M̂1 , M̂2 ) - 6 I {St } ∼ IID N (0, Q) I Transmitters know interference S n , (S1 , . . . , Sn ) non-causally I Inputs Xνn , (Xν,1 , . . . , Xν,n ) at Transmitter ν: (n) X1n = ϕ1 (M1 , V2κ , S n ) (n) X2n = ϕ2 (M2 , V1κ , S n ) 14 /23 Dirty-Paper MAC with Conferencing Encoders M1 - ? Transmitter 1 - @ 6 V1,k M2 St X1,t V2,k ? X2,t Transmitter 2 ¡ Zt ? R? @ i- i µ ¡ - Receiver (M̂1 , M̂2 ) - 6 2 Settings: I Transmitters learn S n before the conference I I (κ) V1,k = f1,k (M1 , V2k−1 , S n ) and (κ) V2,k = f1,k (M2 , V1k−1 , S n ) Transmitters learn S n after the conference 14 /23 Interference acausally known at Txs can perfectly be canceled M1 - ? Transmitter 1 - @ 6 V1,k M2 St X1,t V2,k ? X2,t Transmitter 2 ¡ Zt R? @ i i- ? µ ¡ - Receiver (M̂1 , M̂2 ) - 6 Theorem 2 For two-user Gaussian MAC with conferencing encoders: CInt,before = CInt,after = CConf , ∀Q ≥ 0, if interference known non-causally at both encoders. 15 /23 Part 2: AWGN MAC with Feedback 16 /23 AWGN MAC with Perfect Feedback M1 Transmitter 1 X1,t Yt + Receiver X2,t M2 I (M̂1 , M̂2 ) Zt Transmitter 2 Transmitters observe perfect causal output feedback: (n) Xν,t = ϕν,t (Mν , Y1 , . . . , Yt−1 ), ν ∈ {1, 2}. 17 /23 AWGN MAC with Perfect Feedback M1 Transmitter 1 X1,t Yt + Receiver X2,t M2 Zt Transmitter 2 R2 Ozarow’84: CPerfectFB = (R1 , R2 ) : R1 ≤ [ (M̂1 , M̂2 ) ³ 2 ´ ) log 1 + P1 (1−ρ N ´ ³ 2 ) 1 R2 ≤ log 1 + P2 (1−ρ 2 N ρ∈[0,1] ´ ³ √ R1 + R2 ≤ 1 log 1 + P1 +P2 +2 P1 P2 ρ 2 N 1 2 CFullCoop CPerfectFB CNoCoop R1 17 /23 AWGN MAC with Noisy Feedback V1,t M1 W1,t + Transmitter 1 X1,t + Yt Receiver (M̂1 , M̂2 ) X2,t M2 Transmitter 2 + Zt V2,t W2,t I Noisy feedback: Vν,t = Yt + Wν,t , I {(W1,t , W2,t )} ∼ IID N (0, KW1 W2 ) , ν ∈ {1, 2} Transmitters observe noisy feedback: (n) Xν,t = ϕν,t (Mν , Vν,1 , . . . , Vν,t−1 ), ν ∈ {1, 2}. 18 /23 AWGN MAC with Noisy Feedback V1,t M1 W1,t + Transmitter 1 X1,t + Yt Receiver (M̂1 , M̂2 ) X2,t M2 Transmitter 2 + Zt V2,t W2,t ? I CNoisyFB = I CNoCoop ⊆ CNoisyFB ⊆ CPerfectFB I Are inclusions strict? I Previous schemes collapse to CNoCoop if fb-noise variances too large R2 CFullCoop CPerfectFB CNoCoop CNoisyFB R1 18 /23 Noisy or Perfect Partial Feedback to Tx 2 M1 Transmitter 1 X1,t Yt + Receiver (M̂1 , M̂2 ) X2,t M2 Transmitter 2 + Zt V2,t W2,t I Noisy partial feedback: V2,t = Yt + W2,t , I Transmitter 1 has no feedback: I Transmitter 2 observes noisy feedback: (n) ¢ ¡ {W2,t } ∼ IID N 0, σ22 X1,t = ϕ1,t (M1 ) (n) X2,t = ϕ2,t (M2 , V2,t , . . . , V2,t−1 ), I σ22 = 0: perfect partial feedback 19 /23 Noisy or Perfect Partial Feedback to Tx 2 M1 Transmitter 1 X1,t Yt + Receiver (M̂1 , M̂2 ) X2,t M2 Transmitter 2 + Zt V2,t W2,t R2 ? I CNoisyPartialFB = I CNoCoop ⊆ CNoisyPartialFB ⊆ CPerfectFB I Are inclusions strict? CFullCoop CPerfectFB CNoCoop CNoisyPartialFB R1 19 /23 Main Results for Noisy Feedback Theorem 3a: Noisy feedback is always beneficial! I Noisy feedback always increases capacity region I Fixed P1 , P2 , N > 0: CNoCoop ⊂ CNoisyFB , ∀ KW1 W2 º 0. Inclusion is strict! Theorem 4: Almost-perfect feedback ≈ perfect feedback! I Capacity with noisy feedback converges to perfect-feedback capacity I Fixed P1 , P2 , N > 0 : ³ [ ´ \ cl CNoisyFB (P1 , P2 , N, K) = CPerfectFB (P1 , P2 , N ) σ 2 ≥0 K: tr(K)≤σ 2 20 /23 Main Results for Partial Feedback Theorem 3b: Noisy partial feedback is always beneficial! I Noisy partial feedback always increases capacity region I Fixed P1 , P2 , N > 0: CNoCoop ⊂ CNoisyPartialFB , ∀ σ22 ≥ 0. Inclusion is strict! Theorem 5: Perfect partial-feedback capacity 6= Cover-Leung region! (Answer to van der Meulen) I Perfect partial-feedback capacity > Cover-Leung region 21 /23 Robust Noisy-Feedback Scheme: Concatenated Structure W1,t V1,t + M1 Outer Enc.1 Inner Enc.1 X1,t Yt + X2,t M2 Outer Enc.2 Inner Enc.2 Inner Dec. Outer Dec. (M̂1 , M̂2 ) Zt + V2,t W2,t Inner Channel, η channel uses of original channel I Inner Encoders/Decoder: (Exploit Feedback) I I I I Use feedback Use original channel η times per fed symbol Generalize Ozarow’s perfect-feedback scheme; linear encodings/decodings Outer Encoders/Decoder: (Robustify Inner Scheme) I I I Ignore feedback Use inner channel once every η channel uses of original channel Code to achieve capacity of inner channel 22 /23 Summary I I AWGN MAC with conferencing encoders I Determined capacity region I Conference always increases capacity I New technique for proving opt. of Gaussians under a Markovity constraint I Acausally known interference at both txs can perfectly be canceled AWGN MAC with imperfect feedback I Robust noisy-feedback scheme I Feedback always increases capacity region, even if very noisy or only partial I Almost-perfect feedback ≈ perfect feedback I Cover-Leung region 6= perfect partial-feedback capacity (answer to v.d. Meulen) 23 /23
© Copyright 2026 Paperzz