Parity Game

This presentation is based on the book Automata, Logic and infinite games, Gradel, Thomas and Wilke
Refresh
Player 0
Player 1
Player 0
Player 1
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
(Stewie)
(Spongebob)
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐‘ฃ3
๐‘ฃ7
๐‘ฃ4
๐‘ฃ6
๐‘ฃ5
(Stewie)
(Spongebob)
โ€ข In the previous example, if ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3
(Stewie) wins
๐œ”
โˆˆ ๐‘Š๐‘–๐‘› then player 0
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐œ’ ๐œ‹ = 11011 โ€ฆ
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐œ’ ๐œ‹ = 11011 โ€ฆ
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐œ’ ๐œ‹ = 11011 โ€ฆ
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐œ’ ๐œ‹ = 11011 โ€ฆ
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐œ‹ = ๐‘ฃ0 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ0 โ€ฆ
๐œ’ ๐œ‹ = 11011 โ€ฆ
๐‘ฃ7
Stewie Loses!
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
U
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
๐‘ˆ = ๐‘ฃ0 , ๐‘ฃ1 , ๐‘ฃ2 , ๐‘ฃ3 , ๐‘ฃ7
๐‘ฃ7
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
๐‘ˆ = ๐‘ฃ4 , ๐‘ฃ5 , ๐‘ฃ6 , ๐‘ฃ7
๐‘ฃ7
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
๐ด๐‘ก๐‘ก๐‘Ÿ1 ๐บ, ๐‘ฃ2
= ๐‘ฃ1 , ๐‘ฃ2
๐ด๐‘ก๐‘ก๐‘Ÿ0 ๐บ, ๐‘ฃ2
=๐‘‰
๐‘ฃ7
๐‘ฃ0
๐‘ฃ1
๐‘ฃ2
1
1
0
1
0
1
๐‘ฃ6
2
๐‘ฃ5
2
๐‘ฃ3
๐‘ฃ4
Every playerโ€™s dream
U
G
๐ด๐‘ก๐‘ก๐‘Ÿ๐œŽ ๐บ, ๐‘ˆ
Take a break
โ€ข Formally:
the set of vertices can be partitioned into a
0-paradise and 1-paradise
๐’
โ€ข ๐‘›
โ€ข If the maximum parity of G is ๐ŸŽ then G can be partitioned into
0-paradise and 1-paradise
โ€ข Player 1
๐‘ฟ = ๐’— โˆˆ ๐‘ฝ๐ŸŽ | ๐’…๐’๐’–๐’• ๐’— = ๐ŸŽ โ‡’ ๐€๐ญ๐ญ๐ซ๐Ÿ ๐‘ฎ, ๐‘ฟ ๐’Š๐’” ๐Ÿ-paradise
โ€ข Player 0
โ€ข Player 0 can win only if he avoids 1-paradises.
โ€ข ๐’€ = ๐‘ฝ\๐€๐ญ๐ญ๐ซ๐Ÿ ๐‘ฎ, ๐‘ฟ ๐’Š๐’” ๐ŸŽ-paradise
Not Quite!
๐œŽ โ‰ก ๐‘› ๐‘š๐‘œ๐‘‘ 2
โ€ข Claim: If ๐‘๐œŽ is a ๐œŽ-paradise in ๐บ[๐‘‹๐œŽ ] then ๐‘๐œŽ โˆช ๐‘‹๐œŽ is a ๐œŽ-paradise
in G
๐œŽ โ‰ก ๐‘› ๐‘š๐‘œ๐‘‘ 2
G
๐‘‹๐œŽ
๐‘‹
G๐œŽ
๐‘‹๐œŽ
๐‘‹๐œŽ
๐บ[๐‘‹๐œŽ ]
๐บ[๐‘‹๐œŽ ]
G[Z]
๐บ[๐‘‹๐œŽ ]
Attr๐œŽ ๐บ ๐‘‹๐œŽ , ๐‘
๐‘
๐‘๐œŽ
๐‘๐œŽ G[Z]
Thanks