This presentation is based on the book Automata, Logic and infinite games, Gradel, Thomas and Wilke Refresh Player 0 Player 1 Player 0 Player 1 ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 (Stewie) (Spongebob) ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ฃ3 ๐ฃ7 ๐ฃ4 ๐ฃ6 ๐ฃ5 (Stewie) (Spongebob) โข In the previous example, if ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 (Stewie) wins ๐ โ ๐๐๐ then player 0 ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ ๐ = 11011 โฆ ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ ๐ = 11011 โฆ ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ ๐ = 11011 โฆ ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ ๐ = 11011 โฆ ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ = ๐ฃ0 ๐ฃ1 ๐ฃ2 ๐ฃ3 ๐ฃ0 โฆ ๐ ๐ = 11011 โฆ ๐ฃ7 Stewie Loses! ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 U ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 ๐ = ๐ฃ0 , ๐ฃ1 , ๐ฃ2 , ๐ฃ3 , ๐ฃ7 ๐ฃ7 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 ๐ = ๐ฃ4 , ๐ฃ5 , ๐ฃ6 , ๐ฃ7 ๐ฃ7 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 ๐ด๐ก๐ก๐1 ๐บ, ๐ฃ2 = ๐ฃ1 , ๐ฃ2 ๐ด๐ก๐ก๐0 ๐บ, ๐ฃ2 =๐ ๐ฃ7 ๐ฃ0 ๐ฃ1 ๐ฃ2 1 1 0 1 0 1 ๐ฃ6 2 ๐ฃ5 2 ๐ฃ3 ๐ฃ4 Every playerโs dream U G ๐ด๐ก๐ก๐๐ ๐บ, ๐ Take a break โข Formally: the set of vertices can be partitioned into a 0-paradise and 1-paradise ๐ โข ๐ โข If the maximum parity of G is ๐ then G can be partitioned into 0-paradise and 1-paradise โข Player 1 ๐ฟ = ๐ โ ๐ฝ๐ | ๐ ๐๐๐ ๐ = ๐ โ ๐๐ญ๐ญ๐ซ๐ ๐ฎ, ๐ฟ ๐๐ ๐-paradise โข Player 0 โข Player 0 can win only if he avoids 1-paradises. โข ๐ = ๐ฝ\๐๐ญ๐ญ๐ซ๐ ๐ฎ, ๐ฟ ๐๐ ๐-paradise Not Quite! ๐ โก ๐ ๐๐๐ 2 โข Claim: If ๐๐ is a ๐-paradise in ๐บ[๐๐ ] then ๐๐ โช ๐๐ is a ๐-paradise in G ๐ โก ๐ ๐๐๐ 2 G ๐๐ ๐ G๐ ๐๐ ๐๐ ๐บ[๐๐ ] ๐บ[๐๐ ] G[Z] ๐บ[๐๐ ] Attr๐ ๐บ ๐๐ , ๐ ๐ ๐๐ ๐๐ G[Z] Thanks
© Copyright 2026 Paperzz