Returns in commodities futures markets and financial speculation: a multivariate GARCH approach Joint with Matteo Manera and Ilaria Vignati Università di Pavia 29/11/2011 1 Motivation • From 2000 onwards we observe a number of severe changes in financial markets. There has been a sharp increase (at least until the crisis) in: – Energy prices – Food prices – The numbers of financial participants (both hedgers and speculators) in the futures markets. • These stylized facts have lead to claims that: – speculators drive energy and food prices – speculators affect commodities’ volatility – oil/energy prices induced an increase in food prices 2 Energy futures prices 50 100 150 CRUDE OIL 1995w1 2000w1 2005w1 2010w1 5 10 YEAR_W EEK 0 1990w1 1 MONTH FUTURE PRICE 1985w1 15 0 NATURAL GAS 1985w1 1990w1 1995w1 2000w1 YEAR_WEEK 2005w1 2010w1 3 Agriculture futures prices 2 4 6 8 CORN 0 WHEAT 2005w1 2010w1 8 6 YEAR_WEEK 10 12 2000w1 4 1995w1 2 1990w1 1 MONTH FUTURE PRICE 1985w1 1985w1 1990w1 1995w1 2000w1 YEAR_W EEK 2005w1 4 2010w1 Motivation The aim of this paper is to answer the following research questions: • Is financial speculation significantly related to returns in energy and non-energy commodities? • Do macroeconomic factors explain returns in energy and non-energy commodities? • Are there spillovers between energy and non-energy markets? 5 Literature review oil prices and macroeconomic factors The economic theory suggests few factors that should affect commodities futures returns: – Treasury bill yields – Equity dividend yields – Junk bond premium (Sadorsky 2002, Chevallier 2009) 6 Literature review oil prices and speculation • Several papers suggest that the increasing presence of speculators in oil future markets could explain the spike in prices in 2007-2008 (Masters White 2008, Medlock III and Myers Jaffe, 2009) • However, empirical evidence generally shows that there is not a relationship between the two phenomena (Irwing Sanders 2010, Büyükşahin Harris, 2011) 7 Literature review oil prices and other commodities prices • Oil prices have triggered the increase in food and agricultural prices through costs of energy inputs (Alexandratos, 2008, FAO, 2009) • Increasing interaction between oil/energy and food/non-energy prices is due to the growing demand of bio-fuels (Du et al., 2009, Baffes and Haniotis, 2010) • “Excess co-movement hypothesis” theory (Pindyck and Rotemberg, 1990, Deb, Trivedi and Varangis, 1996) • Spillover effects in futures markets have implications in terms of cross hedging and cross speculation (Malliaris and Urrutia, 1996) 8 Data description • Dependent variable: returns of continuous series of futures in: – 4 energy commodities (oil, gasoline, heating oil, natural gas) – 5 non-energy commodities (corn, oats, soybean oil, soybeans, wheat) • Time period: 1986-2010 • Frequency: weekly • Source: Datastream, CFTC (U. S. Commodity Futures Trading Commission), FRED (Federal Reserve Economic Data) 9 Data description explanatory variables • Macroeconomic factors: – Return on the annual yield on the 90-day T-bill – Returns of S&P 500 Index – Junk bond yield= (return on the annual yield on Moody’s long-term-BAA-rated corporate bonds) – (return on the annual yield on Moody’s long-termAAA-rated corporate bonds) 10 Data description explanatory variables • Speculation: Working’s T index (Working 1960) = proxies the excess of speculation relative to hedging 1 SS if HS HL HS HL SL if HS HL 1 HS HL SS = Speculation Short SL = Speculation Long HS = Hedging Short HL = Hedging Long 11 Has speculation in energy futures market increased? 0 5 10 15 20 25 CRUDE OIL 1.4 NATURAL GAS 25 1.35 2006-2010 20 1986-2005 1.3 15 1.2 1.25 Working's T 10 1.15 5 1.1 0 1.05 kernel density 1 1 1.05 1.1 1.15 1.2 1.25 Working's T 1986-2005 1.3 2006-2010 1.35 1.4 12 Has speculation in agriculture futures market increased? 0 2 4 6 8 10 CORN 1.35 1.4 WHEAT 10 2006-2010 8 1986-2005 1.3 6 1.2 1.25 Working's T 4 1.15 2 1.1 0 1.05 kernel density 1 1 1.05 1.1 1.15 1.2 1.25 Working's T 1986-2005 1.3 2006-2010 1.35 1.4 13 Speculation (Working’s T index) across different commodities Obs Mean Commodity Std. Dev. Min Max Gasoline 1039 260 1986- 2006- 198619862006-2010 2006-2010 1986-2005 2006-2010 2005 2010 2005 2005 1.033 1.044 0.019 0.018 1.000 1.013 1.126 1.121 Heating Oil 1018 260 1.043 1.065 0.032 0.022 1.001 1.020 1.178 1.134 Natural Gas 819 260 1.037 1.168 0.039 0.067 1.000 1.076 1.184 1.413 Crude Oil 1038 259 1.049 1.124 0.030 0.026 1.003 1.065 1.156 1.201 Soybean Oil 1039 260 1.068 1.088 0.047 0.044 1.005 1.024 1.222 1.209 Corn 1039 260 1.085 1.119 0.056 0.065 1.007 1.040 1.229 1.281 AGRICULTURE Oats 1039 260 1.061 1.050 0.053 0.043 1.000 1.000 1.407 1.192 Soybeans 1039 260 1.099 1.114 0.049 0.056 1.017 1.036 1.309 1.232 Wheat 1039 260 1.050 1.101 0.042 0.061 1.000 1.025 1.196 1.291 1986-2005 2006-2010 ENERGY Notes: Summary statistics refer to the “filled” variables. • 1986-2005: energy commodities have mean values lower than nonenergy one • 2006-2010: means increase • For oil and natural gas the increase is bigger than for other commodities 14 The econometric model • The model specification: returns of each commodity are a function of – Treasury bill yields – Equity dividend yields – Junk bond premium – Measures of speculation (Working’s T index) • The econometric strategy: 1. Test for stationarity of series 2. Estimate the model using OLS and test for autocorrelation and ARCH effects in the residuals 3. If present, move to a GARCH (1,1) and/or ARMA specification rit 0 1 S & Pt 2 int_ ratet 3 junk _ bond _ yield t 4WTit 5 rit 1 it i2,t si j 1 j i2,t j j 1 j i2,t j pi qi Then we extend the analysis to a multivariate GARCH model 15 Stationarity tests • Macroeconomic variables and futures generally present a unit root, and are transformed taking the first difference of the logs to gain stationarity • Working’s T index is stationary and considered in levels 16 Results Univariate GARCH(1,1) Gasoline Constant Mean Equation Tbill Junk Bond Yield S&P 500 Working’s T AR(1) Variance Equation Constant ARCH(1) GARCH(1) LM test for ARCH 0.155 (0.066) 0.032 (0.015) -0.052 (0.032) 0.056 (0.054) -0.149 (0.064) 0.188 (0.029) 0.000 (0.000) 0.111 (0.025) 0.838 (0.036) 58.515 ** ** ** *** *** *** *** *** Heating Oil 0.041 (0.037) 0.022 (0.012) -0.025 (0.027) 0.082 (0.049) -0.038 (0.036) 0.186 (0.030) 0.000 (0.000) 0.161 (0.028) 0.756 (0.043) 149.335 * * *** *** *** *** *** Natural Gas 0.052 (0.029) 0.016 (0.017) 0.055 (0.049) 0.152 (0.082) -0.048 (0.027) 0.204 (0.033) 0.000 (0.000) 0.154 (0.037) 0.766 (0.052) 8.522 * * * *** *** *** *** *** Crude Oil -0.054 (0.030) 0.017 (0.015) -0.037 (0.027) 0.125 (0.051) 0.052 (0.028) 0.163 (0.029) 0.000 (0.000) 0.127 (0.026) 0.832 (0.032) 54.849 * ** * *** *** *** *** *** Soybean Oil 0.038 (0.018) 0.011 (0.010) -0.014 (0.019) 0.098 (0.036) -0.035 (0.017) 0.226 (0.027) 0.000 (0.000) 0.060 (0.016) 0.900 (0.029) 29.359 ** *** ** *** ** *** *** *** Corn 0.045 (0.015) 0.017 (0.011) -0.014 (0.021) 0.068 (0.036) -0.041 (0.014) 0.195 (0.028) 0.000 (0.000) 0.152 (0.030) 0.797 (0.037) 21.932 Oats *** * *** *** *** *** *** *** -0.039 (0.023) -0.002 (0.012) -0.021 (0.028) 0.069 (0.049) 0.036 (0.021) 0.172 (0.028) 0.000 (0.000) 0.117 (0.032) 0.769 (0.061) 84.914 Soybeans * * *** *** *** *** *** 0.027 (0.014) 0.008 (0.010) -0.022 (0.018) 0.091 (0.033) -0.024 (0.013) 0.207 (0.030) 0.000 (0.000) 0.172 (0.029) 0.799 (0.030) 30.870 * *** * *** *** *** *** *** Wheat 0.025 (0.017) 0.011 (0.012) -0.003 (0.019) 0.038 (0.036) -0.024 (0.016) 0.213 (0.028) 0.000 (0.000) 0.088 (0.018) 0.892 (0.022) 32.409 Ljung-Box Q test (lag 1) 2.293 0.219 0.633 0.510 0.382 0.003 0.616 0.031 0.408 Log Likelihood 2281 2388 1559 2397 2910 2818 2441 2992 2887 AIC -4542 -4757 -3098 -4774 -5800 -5616 -4862 -5964 -5755 BIC -4490 -4705 -3048 -4722 -5749 -5565 -4811 -5912 -5703 1298 1277 1078 1296 1298 1298 1298 1298 1298 N. of Obs. Notes: error distribution is a Student’s T. Standard errors in parentheses. * significant at 10% level, ** significant at 5% level, *** significant at 1% level. • Apart from crude oil and oats, Working’s T index is negative 17 or not significant *** ** *** *** *** Multivariate GARCH • The analysis developed so far is univariate. • It is interesting to estimate a system where returns for different commodities are jointly estimated, allowing for conditional variances and covariances (spillover effects) • Possible contribution of this econometric exercise: – Indentify if and how returns on oil/energy futures prices are related to food/non-energy commodities futures prices • Model implemented: CCC model and DCC model, which allows for time-varying conditional correlations 18 Multivariate GARCH • General multivariate GARCH: rt Cxt t rt = mx1 vector of dependent variables t H t1/ 2t C = mxk matrix of parameters hij ,t ij hii,t h jj ,t H t Dt1 / 2 RD t1 / 2 xt = kx1 vector of independent variables H t1 / 2 = Cholesky factor of the time varying conditional covariance matrix of the disturbances t = mx1 vector of i.i.d. innovations ij = conditional correlations R = matrix of unconditional correlations of the standardized residuals Dt1 / 2 t 19 Multivariate GARCH • CCC model: H t Dt1 / 2 RD t1 / 2 Dt is a diagonal matrix of conditional variances in which each i2,t evolves according to a univariate GARCH process defined as in the univariate p q analysis as i2,t si j 1 j i2,t j j 1 j i2,t j i i R = matrix of time-invariant unconditional correlations of the standardized residuals Dt1 / 2 t • DCC model: H t Dt1 / 2 Rt Dt1 / 2 Rt = matrix of time-varying conditional correlations Rt diag (Qt ) 1 / 2 Qt diag (Qt ) 1 / 2 ~t = mx1 vector of 1 / 2 ' ~ ~ standardized residuals D t t Qt (1 1 2 ) R 1 t 1 t 1 2 Qt 1 2 = parameters for dynamics of Rt 20 Multivariate GARCH • We group the commodities in two subgroups: 1. “Fuels”: it includes the four energy commodities and soybean oil (spillovers between energy markets and a bio-fuel) 2. “Agriculture”: it includes the five agricultural commodities (spillovers between food markets and a bio-fuel) • We consider one more group: 3. “Agriculture + factor of energy commodities”: it includes the five agricultural commodities and a factor of the energy ones (spillovers between energy and agricultural markets) 21 Results CCC model – “Fuels” group Gasoline Constant Tbill Junk Bond Yield S&P 500 Gasoline(-1) Mean Equation Heating Oil(-1) Natural Gas(-1) Crude Oil(-1) Soybean Oil(-1) Working’s T Gasoline Working’s T Heating Oil Working’s T Natural Gas Working’s T Crude Oil Working’s T Soybean Oil Variance Equation Constant ARCH(1) GARCH(1) 0.157 (0.073) 0.026 (0.016) -0.052 (0.033) 0.177 (0.070) 0.091 (0.046) -0.151 (0.058) 0.049 (0.020) 0.205 (0.058) -0.014 (0.044) -0.218 (0.064) 0.024 (0.042) -0.002 (0.033) 0.088 (0.055) -0.045 (0.026) 0.000 (0.000) 0.078 (0.019) 0.848 (0.041) Heating Oil ** ** *** ** *** *** * *** *** *** 0.011 (0.064) 0.007 (0.013) -0.033 (0.029) 0.188 (0.061) -0.041 (0.038) -0.055 (0.055) 0.065 (0.018) 0.258 (0.052) -0.048 (0.038) -0.034 (0.056) -0.024 (0.037) -0.026 (0.028) 0.109 (0.046) -0.035 (0.023) 0.000 (0.000) 0.087 (0.016) 0.864 (0.025) Log Likelihood *** *** *** ** *** *** *** Natural Gas -0.071 (0.105) -0.001 (0.019) 0.035 (0.047) 0.172 (0.087) -0.080 (0.057) -0.043 (0.073) 0.198 (0.034) 0.144 (0.069) -0.049 (0.060) 0.051 (0.094) 0.015 (0.059) -0.095 (0.043) 0.134 (0.076) -0.036 (0.037) 0.000 (0.000) 0.134 (0.031) 0.773 (0.042) *** ** ** * *** *** *** 0.093 (0.066) 0.004 (0.014) -0.057 (0.030) 0.198 (0.063) -0.007 (0.038) -0.097 (0.055) 0.057 (0.018) 0.224 (0.056) -0.053 (0.039) -0.130 (0.057) -0.009 (0.037) -0.027 (0.029) 0.124 (0.047) -0.047 (0.023) 0.000 (0.000) 0.103 (0.015) 0.848 (0.019) * *** * *** *** ** *** ** *** *** *** Soybean Oil -0.026 (0.046) 0.004 (0.011) -0.006 (0.021) 0.157 (0.043) 0.030 (0.026) -0.021 (0.032) -0.034 (0.013) -0.003 (0.033) 0.211 (0.031) -0.034 (0.042) 0.028 (0.031) -0.045 (0.024) 0.106 (0.037) -0.029 (0.016) 0.000 (0.000) 0.101 (0.035) 0.839 (0.065) *** *** *** * *** * *** *** *** 11068 AIC -21943 BIC -21465 Degree of Freedom 9.617 (1.047) N. of Obs. ** Crude Oil 1076 1076 1076 *** 22 1076 1076 Notes: error distribution is a multivariate Student’s T. Standard errors in parentheses. * significant at 10% level, ** significant at 5% Results CCC model – “Fuels” group Conditional correlations: Gasoline Gasoline Heating Oil Natural Gas Crude Oil Soybean Oil Heating Oil Natural Gas Crude Oil Soybean Oil 1 0.723 (0.016) 0.234 (0.031) 0.748 (0.014) 0.121 (0.032) *** 1 *** 0.324 *** (0.029) 0.818 *** (0.011) 0.167 *** (0.032) *** *** 1 0.231 *** (0.031) 0.124 *** (0.032) 1 0.135 *** (0.032) 1 Notes: * significant at 10% level, ** significant at 5% level, *** significant at 1% level. 23 Constant Tbill Junk Bond Yield S&P 500 Constant Mean Equation Mean Equation Gasoline(-1) Tbill Heating Oil(-1) Junk Bond Yield Natural Gas(-1) S&P 500 Crude Oil(-1) Gasoline(-1) Soybean Oil(-1) Heating Oil(-1) Working’s T Gasoline Natural Gas(-1) Working’s T Heating Oil Crude Oil(-1) Working’s T Natural Gas Soybean Oil(-1) Working’s T Crude Oil Working’s T Gasoline Working’s T Soybean Oil Working’s T Heating Oil Variance Equation Constant Working’s T Natural Gas ARCH(1) Working’s T Crude Oil GARCH(1) Working’s T Soybean Oil Variance Equation Log Likelihood Constant AIC ARCH(1) BIC GARCH(1) Degree of Freedom Gasoline Heating Oil Natural Gas Crude Oil Soybean Oil 0.154 ** (0.072) 0.030 * (0.016) -0.037 Gasoline (0.033) 0.123 * 0.154 ** (0.070) (0.072) 0.061 0.030 * (0.046) (0.016) -0.125 ** -0.037 (0.055) (0.033) 0.046 ** 0.123 * (0.020) (0.070) 0.198 *** 0.061 (0.057) (0.046) 0.004 -0.125 ** (0.045) (0.055) -0.200 *** 0.046 ** (0.063) (0.020) 0.019 0.198 *** (0.043) (0.057) 0.013 0.004 (0.033) (0.045) 0.050 -0.200 *** (0.055) (0.063) -0.030 0.019 (0.026) (0.043) 0.000 *** 0.013 (0.000) (0.033) 0.089 *** 0.050 (0.020) (0.055) 0.836 *** -0.030 (0.039) (0.026) 0.000 *** (0.000) 0.089 *** (0.020) 0.836 *** (0.039) -0.002 (0.064) 0.012 (0.014) -0.024 Heating (0.028)Oil 0.149 ** -0.002 (0.061) (0.064) -0.041 0.012 (0.037) (0.014) -0.034 -0.024 (0.052) (0.028) 0.071 *** 0.149 ** (0.018) (0.061) 0.229 *** -0.041 (0.050) (0.037) -0.031 -0.034 (0.038) (0.052) -0.014 0.071 *** (0.055) (0.018) -0.028 0.229 *** (0.037) (0.050) -0.012 -0.031 (0.028) (0.038) 0.073 -0.014 (0.046) (0.055) -0.016 -0.028 (0.023) (0.037) 0.000 *** -0.012 (0.000) (0.028) 0.090 *** 0.073 (0.016) (0.046) 0.855 *** -0.016 (0.027) (0.023) 0.000 *** (0.000) 0.090 *** (0.016) 0.855 *** (0.027) -0.034 (0.104) 0.000 (0.018) 0.044 Natural (0.046)Gas 0.186 ** -0.034 (0.089) (0.104) -0.091 0.000 (0.056) (0.018) -0.014 0.044 (0.070) (0.046) 0.201 *** 0.186 ** (0.034) (0.089) 0.117 * -0.091 (0.068) (0.056) -0.054 -0.014 (0.060) (0.070) 0.034 0.201 *** (0.093) (0.034) 0.003 0.117 * (0.058) (0.068) -0.072 * -0.054 (0.044) (0.060) 0.100 0.034 (0.076) (0.093) -0.030 0.003 (0.037) (0.058) 0.000 *** -0.072 * (0.000) (0.044) 0.148 *** 0.100 (0.033) (0.076) 0.759 *** -0.030 (0.044) (0.037) 11116 0.000 *** (0.000) -22035 0.148 *** (0.033) -21547 0.759 *** *** 10.080 (0.044) (1.125) 0.079 (0.065) 0.011 (0.015) -0.053 * Crude (0.030)Oil 0.138 ** 0.079 (0.065) (0.065) -0.020 0.011 (0.038) (0.015) -0.077 -0.053 * (0.052) (0.030) 0.067 *** 0.138 ** (0.018) (0.065) 0.215 *** -0.020 (0.054) (0.038) -0.038 -0.077 (0.039) (0.052) -0.108 * 0.067 *** (0.056) (0.018) -0.014 0.215 *** (0.037) (0.054) -0.010 -0.038 (0.029) (0.039) 0.081 * -0.108 * (0.047) (0.056) -0.024 -0.014 (0.023) (0.037) 0.000 *** -0.010 (0.000) (0.029) 0.105 *** 0.081 * (0.015) (0.047) 0.846 *** -0.024 (0.019) (0.023) 0.000 *** (0.000) 0.105 *** (0.015) 0.846 *** (0.019) -0.011 (0.046) 0.002 (0.011) 0.000 Soybean (0.020) Oil 0.146 *** -0.011 (0.043) (0.046) 0.034 0.002 (0.026) (0.011) -0.016 0.000 (0.031) (0.020) -0.032 *** 0.146 *** (0.013) (0.043) -0.015 0.034 (0.032) (0.026) 0.202 *** -0.016 (0.031) (0.031) -0.036 -0.032 *** (0.041) (0.013) 0.010 -0.015 (0.030) (0.032) -0.035 0.202 *** (0.023) (0.031) 0.106 *** -0.036 (0.036) (0.041) -0.034 ** 0.010 (0.015) (0.030) 0.000 *** -0.035 (0.000) (0.023) 0.129 *** 0.106 *** (0.045) (0.036) 0.764 *** -0.034 ** (0.098) (0.015) 0.000 *** (0.000) 0.129 *** (0.045) 0.764 *** (0.098) Results DCC model – “Fuels” group Log Likelihood Lambda 1 11116 0.051 *** (0.010) AIC -22035 Lambda 2 0.821 *** (0.043) BIC -21547 Test for Lambda 1 = 1408.85 Degree of Freedom 10.080 *** *** Lambda 2= 0 (Chi2(2)) (1.125) N. of Obs. 1076 1076 1076 *** 1076 1076 Lambda 1 0.051 (0.010) Notes: error distribution is a multivariate Student’s T. Standard errors in parentheses. * significant at 10% level, ** significant at 5% 24 Results DCC model – “Fuels” group Dynamic conditional correlations – Mean tests: Mean Returns T-stat Before 2005 After 2005 Gasoline, Heating Oil 0.695 0.736 -9.762*** Gasoline, Natural Gas 0.207 0.255 -8.497*** Gasoline, Crude Oil 0.720 0.735 -3.759*** Gasoline, Soybean Oil 0.104 0.211 -20.005*** Heating Oil, Natural Gas 0.322 0.359 -7.225*** Heating Oil, Crude Oil 0.772 0.791 -4.830*** Heating Oil, Soybean Oil 0.136 0.271 -24.471*** Natural Gas, Crude Oil 0.214 0.242 -5.004*** Natural Gas, Soybean Oil 0.115 0.177 -12.310*** Crude Oil, Soybean Oil 0.097 0.224 -23.076*** 25 Dynamic conditional correlations graphs “Fuels” group 0 .2 .4 .6 .8 Corr(Gasoline, Heating Oil) 1990w1 1995w1 2000w1 2005w1 2010w1 Corr(Gasoline, Natural Gas) 0 -.2 0 .2 .2 .4 .4 .6 .6 Corr(Heating Oil, Natural Gas) 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 Corr(Gasoline, Crude Oil) 1995w1 2000w1 2005w1 2010w1 Corr(Natural Gas, Crude Oil) 1995w1 2000w1 2005w1 2010w1 1990w1 Corr(Gasoline, Soybean Oil) -.2 1995w1 2000w1 2005w1 1990w1 2010w1 2000w1 2005w1 2010w1 Corr(Crude Oil, Soybean Oil) Corr(Natural Gas, Soybean Oil) .4 .4 .2 26 1990w1 1995w1 2000w1 2005w1 2010w1 -.2 -.1 -.2 -.2 0 0 0 0 .1 .2 .2 .4 .2 .3 .4 .6 .6 Corr(Heating Oil, Soybean Oil) 1995w1 .6 1990w1 0 0 .2 .2 0 .4 .4 .2 .6 .6 .8 .8 .4 Corr(Heating Oil, Crude Oil) 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 Results CCC model – “Agriculture” group Corn Constant Tbill Junk Bond Yield S&P 500 Corn(-1) Mean Equation Oats(-1) Soybeans(-1) Wheat(-1) Soybean Oil(-1) Working’s T Corn Working’s T Oats Working’s T Soybeans Working’s T Wheat Working’s T Soybean Oil Variance Equation Constant ARCH(1) GARCH(1) 0.016 (0.021) 0.014 (0.012) -0.008 (0.018) 0.072 (0.035) 0.163 (0.037) 0.022 (0.021) -0.042 (0.042) -0.012 (0.029) 0.016 (0.035) -0.030 (0.014) 0.026 (0.013) 0.002 (0.015) -0.022 (0.017) 0.010 (0.017) 0.000 (0.000) 0.094 (0.018) 0.846 (0.029) Oats ** *** ** * *** *** *** -0.041 (0.030) -0.004 (0.013) -0.022 (0.025) 0.085 (0.049) -0.056 (0.047) 0.200 (0.032) 0.003 (0.055) 0.040 (0.040) -0.017 (0.049) -0.036 (0.020) 0.055 (0.018) -0.001 (0.021) 0.005 (0.023) 0.016 (0.023) 0.000 (0.000) 0.095 (0.025) 0.769 (0.066) Log Likelihood Soybeans * *** * *** *** *** *** 0.029 (0.018) 0.016 (0.011) -0.014 (0.015) 0.096 (0.031) 0.017 (0.030) 0.019 (0.017) 0.148 (0.039) -0.025 (0.025) 0.030 (0.030) -0.004 (0.012) 0.007 (0.011) -0.014 (0.013) 0.000 (0.014) -0.014 (0.014) 0.000 (0.000) 0.118 (0.017) 0.846 (0.020) Wheat *** *** *** *** *** * *** ** *** *** *** 0.022 (0.021) 0.017 (0.011) -0.021 (0.019) 0.094 (0.037) 0.028 (0.032) 0.003 (0.020) -0.027 (0.040) 0.003 (0.028) 0.209 (0.035) -0.003 (0.014) -0.010 (0.014) -0.007 (0.015) 0.000 (0.016) -0.009 (0.016) 0.000 (0.000) 0.042 (0.011) 0.922 (0.020) ** *** *** *** *** 15239 AIC -30286 BIC -29790 Degree of Freedom 7.475 *** (0.630) N. of Obs. 0.015 (0.021) 0.013 (0.011) -0.007 (0.017) 0.050 (0.034) -0.035 (0.034) 0.032 (0.019) -0.013 (0.038) 0.174 (0.031) 0.028 (0.033) -0.028 (0.014) -0.004 (0.013) 0.012 (0.015) -0.018 (0.016) 0.023 (0.017) 0.000 (0.000) 0.078 (0.019) 0.894 (0.027) Soybean Oil 1297 1297 1297 27 1297 1297 Notes: error distribution is a multivariate Student’s T. Standard errors in parentheses. * significant at 10% level, ** significant at 5% Results CCC model – “Agriculture” group Conditional correlations: Corn Corn 1 Oats 0.504 (0.022) 0.613 (0.019) 0.523 (0.022) 0.478 (0.023) Soybeans Wheat Soybean Oil Oats *** 1 *** 0.384 *** (0.025) 0.380 *** (0.026) 0.333 *** (0.026) *** *** Soybeans Wheat Soybean Oil 1 0.344 *** (0.026) 0.682 *** (0.016) 1 0.280 *** (0.027) 1 Notes: * significant at 10% level, ** significant at 5% level, *** significant at 1% level. 28 Corn Constant Tbill Junk Bond Yield S&P 500 Constant Corn(-1) Tbill Mean Equation Mean Equation Oats(-1) Junk Bond Yield Soybeans(-1) S&P 500 Wheat(-1) Corn(-1) Soybean Oats(-1) Oil(-1) Working’s T Corn Soybeans(-1) Working’s Wheat(-1) T Oats Working’s T Soybeans Soybean Oil(-1) Working’s Working’s T T Wheat Corn Working’s Oil Working’s T T Soybean Oats Variance Equation Constant Working’s T Soybeans ARCH(1) Working’s T Wheat GARCH(1) Working’s T Soybean Oil Soybeans Wheat Soybean Oil Results DCC model – “Agriculture” group * *** * *** ** * ** * *** *** *** -0.050 (0.029) -0.005 (0.014) -0.026 Oats (0.025) 0.075 -0.050 (0.049) (0.029) -0.045 -0.005 (0.047) (0.014) 0.189 -0.026 (0.032) (0.025) 0.007 0.075 (0.054) (0.049) 0.046 -0.045 (0.039) (0.047) -0.019 0.189 (0.049) (0.032) -0.035 0.007 (0.020) (0.054) 0.056 0.046 (0.018) (0.039) 0.003 -0.019 (0.021) (0.049) 0.005 -0.035 (0.023) (0.020) 0.019 0.056 (0.023) (0.018) 0.000 0.003 (0.000) (0.021) 0.099 0.005 (0.025) (0.023) 0.777 0.019 (0.061) (0.023) * * *** *** * *** * *** *** *** *** 0.026 (0.018) 0.016 (0.011) -0.018 Soybeans (0.015) 0.085 0.026 *** (0.031) (0.018) 0.021 0.016 (0.029) (0.011) 0.016 -0.018 (0.017) (0.015) 0.140 0.085 *** *** (0.039) (0.031) -0.022 0.021 (0.024) (0.029) 0.033 0.016 (0.030) (0.017) -0.007 0.140 *** (0.012) (0.039) 0.004 -0.022 (0.011) (0.024) -0.009 0.033 (0.013) (0.030) 0.001 -0.007 (0.014) (0.012) -0.012 0.004 (0.014) (0.011) 0.000 *** -0.009 (0.000) (0.013) 0.123 0.001 *** (0.017) (0.014) 0.848 *** -0.012 (0.018) (0.014) 0.013 (0.020) 0.012 (0.011) -0.010 Wheat (0.017) 0.040 0.013 (0.034) (0.020) -0.042 0.012 (0.033) (0.011) 0.027 -0.010 (0.019) (0.017) -0.007 0.040 (0.038) (0.034) 0.180 -0.042 (0.031) (0.033) 0.031 0.027 (0.033) (0.019) -0.030 -0.007 (0.014) (0.038) -0.005 0.180 (0.013) (0.031) 0.011 0.031 (0.015) (0.033) -0.012 -0.030 (0.016) (0.014) 0.025 -0.005 (0.016) (0.013) 0.000 0.011 (0.000) (0.015) 0.089 -0.012 (0.022) (0.016) 0.880 0.025 (0.030) (0.016) 15269 0.000 *** (0.000) AIC -30343 ARCH(1) 0.123 *** (0.017) BIC -29836 GARCH(1) 0.848 *** *** Degree of Freedom 7.668 (0.018) (0.659) Log Likelihood 15269 *** Lambda 1 0.023 (0.006) AIC -30343 Lambda 2 0.925 *** (0.027) BIC -29836 Test for Lambda 1 = 4706 Degree of Freedom 7.668 *** *** Lambda 2 = 0 (Chi2(2)) (0.659) N. of Obs. 1297 1297 1297 Lambda 1 0.023 *** (0.006) Notes: error distribution is a multivariate Student’s T. Standard errors in parentheses. * significant at Variance Equation Log Likelihood Constant 0.014 (0.021) 0.012 (0.012) -0.011 Corn (0.018) 0.064 0.014 (0.035) (0.021) 0.158 0.012 (0.037) (0.012) 0.022 -0.011 (0.021) (0.018) -0.041 0.064 (0.041) (0.035) -0.012 0.158 (0.029) (0.037) 0.030 0.022 (0.034) (0.021) -0.032 -0.041 (0.014) (0.041) 0.023 -0.012 (0.013) (0.029) 0.003 0.030 (0.015) (0.034) -0.018 -0.032 (0.017) (0.014) 0.012 0.023 (0.017) (0.013) 0.000 0.003 (0.000) (0.015) 0.107 -0.018 (0.019) (0.017) 0.837 0.012 (0.028) (0.017) Oats 0.000 *** (0.000) 0.107 *** (0.019) 0.837 *** (0.028) 0.000 *** (0.000) 0.099 *** (0.025) 0.777 *** (0.061) *** ** *** ** *** *** *** 0.000 *** (0.000) 0.089 *** (0.022) 0.880 *** (0.030) 0.020 (0.020) 0.014 (0.011) -0.027 Soybean (0.019) Oil 0.088 0.020 ** (0.037) (0.020) 0.033 0.014 (0.032) (0.011) -0.004 -0.027 (0.020) (0.019) -0.028 0.088 ** (0.039) (0.037) 0.010 0.033 (0.027) (0.032) 0.210 -0.004 *** (0.035) (0.020) -0.006 -0.028 (0.014) (0.039) -0.002 0.010 (0.013) (0.027) -0.002 0.210 *** (0.015) (0.035) 0.002 -0.006 (0.016) (0.014) -0.010 -0.002 (0.016) (0.013) 0.000 -0.002 *** (0.000) (0.015) 0.052 0.002 *** (0.011) (0.016) 0.916 -0.010 *** (0.020) (0.016) 0.000 *** (0.000) 0.052 *** (0.011) 0.916 *** (0.020) 29 1297 1297 10% level, ** significant at 5% Results DCC model – “Agriculture” group Dynamic conditional correlations – Mean tests: Mean Returns T-stat Before 2005 After 2005 Corn, Oats 0.477 0.492 -2.978*** Corn, Soybeans 0.608 0.616 -1.704*** Corn, Wheat 0.505 0.532 -5.583*** Corn, Soybean Oil 0.483 0.503 -4.687*** Oats, Soybeans 0.379 0.381 -0.359*** Oats, Wheat 0.355 0.373 -3.839*** Oats, Soybean Oil 0.334 0.370 -8.366*** Soybeans, Wheat 0.341 0.354 -2.744*** Soybeans, Soybean Oil 0.684 0.714 -7.122*** Wheat, Soybean Oil 0.278 0.318 -9.340*** 30 Dynamic conditional correlations graphs “Agriculture” group 0 .2 .4 .6 Corr(Corn, Oats) 1985w1 1990w1 1995w1 2000w1 2005w1 2010w1 Corr(Corn, Soybeans) 1985w1 0 0 .2 .2 .4 .4 .6 .6 .8 Corr(Oats, Soybeans) 1990w1 1995w1 2000w1 2005w1 2010w1 1985w1 1990w1 Corr(Corn, Wheat) 1995w1 2000w1 2005w1 2010w1 Corr(Soybeans, Wheat) 1990w1 1995w1 2000w1 2005w1 2010w1 1985w1 0 1990w1 Corr(Corn, Soybean Oil) 1995w1 2000w1 2005w1 1985w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 Corr(Wheat, Soybean Oil) Corr(Soybeans, Soybean Oil) 1985w1 1990w1 1995w1 2000w1 2005w1 2010w1 1985w1 1990w1 1995w1 2000w1 2005w1 2010w1 1985w1 31 0 0 0 0 .1 .2 .2 .2 .2 .4 .3 .4 .4 .6 .4 .6 .8 .6 Corr(Oats, Soybean Oil) .5 1985w1 0 0 .1 .2 .2 .2 .4 .3 .4 .6 .4 .5 .6 .8 Corr(Oats, Wheat) 1990w1 1995w1 2000w1 2005w1 2010w1 1985w1 1990w1 1995w1 2000w1 2005w1 2010w1 Do energy markets influence non-energy commodities? • It is not feasible to estimate jointly fuels and agriculture markets due to the large number of parameters to be estimated (no convergence achieved) • We summarize energy markets into one variable (“energy”) using principal factor analysis • This allows to investigate if “energy” influence agriculture prices, as often claimed 32 Results CCC model – “Agriculture + factor energy” group 33 Results CCC model – “Agriculture + factor energy” group Conditional correlations: Corn Corn 1 Oats 0.524 (0.024) 0.611 (0.020) 0.527 (0.024) 0.471 (0.025) 0.061 (0.032) Soybeans Wheat Soybean Oil Energy factor Oats *** 1 *** 0.368 (0.028) 0.378 (0.028) 0.327 (0.029) 0.103 (0.032) *** *** * Soybeans *** 1 *** 0.331 (0.029) 0.690 (0.017) 0.112 (0.032) *** *** Wheat *** 1 *** 0.283 (0.030) 0.101 (0.032) *** Soybean Oil *** 1 *** 0.144 (0.032) *** Energy factor 1 Notes: * significant at 10% level, ** significant at 5% level, *** significant at 1% level. 34 Results DCC model – “Agriculture + factor energy” group 35 Results DCC model – “Agriculture + factor energy” group Dynamic conditional correlations – Mean tests: Mean Returns T-stat Before 2005 After 2005 Corn, Oats 0.483 0.496 -2.504*** Corn, Soybeans 0.587 0.603 -2.852*** Corn, Wheat 0.501 0.532 -5.437*** Corn, Soybean Oil 0.453 0.489 -7.694*** Corn, Energy factor 0.042 0.117 -18.584*** Oats, Soybeans 0.343 0.354 -2.601*** Oats, Wheat 0.349 0.378 -6.117*** Oats, Soybean Oil 0.304 0.352 -12.509*** Oats, Energy factor 0.060 0.117 -13.039*** Soybeans, Wheat 0.324 0.343 -3.789*** Soybeans, Soybean Oil 0.668 0.715 -8.253*** Soybeans, Energy factor 0.090 0.203 -30.488*** Wheat, Soybean Oil 0.270 0.321 -11.431*** Wheat, Energy factor 0.091 0.132 -10.512*** Soybean Oil, Energy factor 0.099 0.264 -40.627*** 36 Dynamic conditional correlations graphs “Agriculture + energy factor” group 0 .2 .4 .6 Corr(Corn, Oats) 1990w1 1995w1 2000w1 2005w1 2010w1 Corr(Oats, Soybeans) 0 0 .2 .2 .4 .4 .6 .8 .6 Corr(Corn, Soybeans) 1995w1 2000w1 2005w1 1990w1 2010w1 1995w1 Corr(Corn, Wheat) 2000w1 2005w1 2010w1 Corr(Soybeans, Wheat) .4 0 0 0 .1 .1 .2 .2 .2 .4 .3 .3 .4 .6 .5 .8 Corr(Oats, Wheat) .5 1990w1 2000w1 2005w1 2010w1 1990w1 Corr(Corn, Soybean Oil) 1995w1 2000w1 2005w1 1995w1 2000w1 2005w1 2010w1 Corr(Soybeans, Soybean Oil) Corr(Oats, Soybean Oil) Corr(Wheat, Soybean Oil) 2000w1 2005w1 2010w1 1990w1 Corr(Corn, Energy factor) 1995w1 2000w1 2005w1 1990w1 2010w1 Corr(Oats, Energy factor) 0 2000w1 2005w1 2010w1 1990w1 Corr(Soybeans, Energy factor) 1995w1 2000w1 2005w1 2010w1 Corr(Soybean Oil, Energy factor) Corr(Wheat, Energy factor) .4 .3 .1 0 0 -.1 -.1 -.1 0 0 0 .1 .2 .1 .1 .1 .2 .3 .2 .3 .2 .2 .4 .3 1995w1 .5 1995w1 .3 1990w1 0 0 0 .1 .1 .2 .2 .2 .2 .4 .3 .3 .4 .4 .6 .4 .5 .6 1990w1 2010w1 .5 1995w1 .8 1990w1 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 1990w1 1995w1 2000w1 2005w1 2010w1 37 What’s next? Recursive estimates allow to investigate the effect of Working’s T index over time .02 .04 .06 .08 .1 .12 Soybean oil returns equation 2000w1 2002w1 2004w1 2006w1 year_week Working's T crude oil (coeff.) sign. 10% 2008w1 sign. 5% 2010w1 sign. 1% 38 Conclusions • Speculation − Working’s T index is poorly significant in both univariate and multivariate models suggesting that speculation is not relevant in explaining commodities’ returns • Macroeconomic factors − equity returns are generally positive and significant • Spillovers − There are spillovers within the two groups of commodities − Between groups (“energy” factor): high conditional correlations between energy factor and agricultural commodities after 2005 39 Thanks! 40
© Copyright 2026 Paperzz