Module 5 Homework 1: Non-Calculator

Homework 3 (Calculator not allowed)
Name:
1) Here are the names of some shapes. Match a shape with each of the properties described.
Square
Rectangle
a) has more than 4 sides
Isosceles triangle
Equilateral triangle
Rhombus
Pentagon
...................................................................................................................................................................................
b) has 4 right angles and the 4 sides of equal length
c) has three sides with two sides of equal length
...................................................................................................................
................................................................................................................
(1)
(1)
(1)
3
2) Two supermarkets sell the same tin of tomato soup. One supermarket sells the tin for £1.09. The other
supermarket sells the tin for 93p. Work out the difference in cost between the two supermarkets.
...........................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................
(2)
2
3) A lesson starts at 11:50. It finishes at 12:35 when lunchtime begins.
a) How long does the lesson last? .................................................................... minutes
(1)
b) Lunchtime lasts for 50 minutes. Then the afternoon lessons begin.
Write down the time that afternoon lessons begin, then draw on the
hands of the clock to show this time
Lessons begin at: .......................................... (1)
(1)
3
4) Complete each of the number sequences.
a) 7, 14, 21,
...........
b) 1, ........... , 5, 7, 9
c) 16, 8, 4, 2, 1, ............
d) ¼, ½, .............. , 1, 1¼
4
Fruit
Tally
Frequency
Apples
Bananas
Strawberries
Grapes
Oranges
frequency
5) Here is the list of portions of fruit that Sam has eaten over a week.
Apple Banana Strawberries Apple
Grapes Banana Apple
Grapes
Apple
Apple Grapes Orange
Banana Apple Grapes
Strawberries
a) Complete the tally chart using
b) Use the tally chart to draw a bar chart (1)
the information provided
(1)
7
6
5
4
3
2
1
0
Apples
Bananas
Strawberries
Grapes
Oranges
c) Sam aims to eat at least 15 portions of fruit each week.
Does he manage to meet this target?
© t.silvester 2014
Yes  No 
(1)
3
Page 1
15
Homework 3 (Calculator not allowed)
1) Here is a multiplication table:
×
32
33
34
35
36
a) Fill in the gaps:
14 × 33 = .......................
(1)
14 × ......................... = 476
(1)
12
384
396
408
420
13
416
429
442
455
14
448
462
476
490
15
480
495
510
525
16
512
528
544
560
544 ÷ 16 = ........................... (1)
b) Fill in the missing values in row 36.
(2)
5
2 a) Work out
28 ÷ 7 = ................................. (1)
823 – 154 = ............................... (1)
47 × 3 = ............................. (1)
......................................................................
.............................................................................
..........................................................................
......................................................................
.............................................................................
..........................................................................
......................................................................
.............................................................................
..........................................................................
......................................................................
.............................................................................
..........................................................................
b) What number should you subtract from 101 to make 84?
3) Here is a diagram.
(1)
.................................................................................
a) Point D is halfway between points A and B.
What are the coordinates of point D?
( …..…. , ……... )
y
A (2,6)
4
(1)
b) Explain how we know triangle ABC is not isosceles
…………………………………………………………………………………………………….
B
C (7,2)
(2,2)
…………………………………………………………………………………………………
(1)
2
x
4)
The arrow by this thermometer
shows a temperature of 10oC.
a) Draw an arrow by the thermometer to show -5oC.
b) Use the scale to convert 30oC to oF
(1)
……………………………………………………
(1)
2
5) Fill in the missing numbers.
1
6 2 + .................. = 10
© t.silvester 2014
50% of
Page 2
.......................
= 17
2
15
Homework 3 (Calculator not allowed)
1) The clock shows a time. The hours and minutes are both multiples of 3.
a) Write a different time when the hours and minutes are both multiples of 3.
06 : 12
..................................................................................................................................................................................................................................
(1)
07 : 57
b) At a later time the clock shows:
How many minutes will it be before the hours and the minutes are first both multiples of 5?
..............................................................................................................................................................................
minutes
(2)
3
2) I start with a square of paper. It is folded in half and two shapes are cut out.
Circle the diagram on the right that shows what the paper looks like now.
=
(1)
A new square of paper is folded into quarters. Two more shapes are cut out. Circle the correct diagram.
=
(1)
3) The diagram shows the distance between junctions on a motorway.
4 miles

 3 miles  9 miles
2
a) How many miles is it between junctions 2 and 4?
7 miles

………………………………………………………………………..
miles (1)
b) Kyle drives from junction 5 to junction 3 and back again. How many miles does he travel altogether?
…………………………………………………………………………………………………………………………………………..
4 a) Write the answers:
(3 + 2) × 5 =
...............................
(1)
3 + (2 × 5) =
(1)
2
.....................................
b) Put brackets in the calculation to make the answer 27
6 + 3 × 4 – 1
c) Put brackets in the calculation to make the answer 28
2 × 3 + 4 × 2
(1)
(1)
(1)
4
3 cm
5) The diagram shows a box.
a) Complete the net for the box.
1 cm
(2)
2 cm
b) The area of the shaded face is
...............................................................................................
cm2 (1)
c) Jane fills the box with centimetre cubes.
How many cubic centimetres can fit into the box?
..................................................................................................................
© t.silvester 2014
Page 3
(1)
4
15
Homework 3 (Calculator not allowed)
1
1
2
1a) Look at these fractions.
4
6
3
Mark each fraction on the number line.
The first is done for you.
b) Complete the equivalent fractions;
1
4
0
1
(1)
6
≡
8
1
≡
4
4
7
1
8
≡ 32
(2)
3
2) Jeremy buys a pack of smarties. There are 30 smarties in each pack and the table shows how many of
each colour are in the pack.
Complete each sentence if Jeremy chooses a smartie at random.
Colour
Number of smarties
Yellow
Orange
Blue
Red
Green
Pink
5
4
6
7
5
3
1
The probability that the colour will be ……………………………………. is 10 (1)
The probability of Green is …………………….………. in its simplest form (2)
3) The pie chart shows rainfall over September.
a) How many days have no rain recorded?
Number of days with
no rain
Number of days with
up to 5 mm of rain
Number of days with
over 5 mm of rain
3
…………………………………………………………………… (1)
1
b) 10
of the month is represented by days with
over 5mm of rain recorded. What is the size of
the angle used to show this on the pie chart?
2
…………………………………………………………………… (1)
4 a) What fraction of shape A is shaded?
Write the fraction as simply as possible.
...................................... (1)
b) Which shape has the greater percentage
shaded? Tick the correct box.
Shape A

Shape B

A
Both the same

c) Continue to shade Shape B so that 50% of the shape
is shaded.
5 a) A plane holds 252 passengers. The plane makes
28 journeys in a month. What is the total number
of passengers that can travel on the plane in one
month. Show your working.
B
(1)
(1)
3
b) Lunch packs for passengers on the plane are
provided in boxes. Each box contains 12 lunch
packs. How many boxes are needed to supply the
passengers on one flight? Show your working.
.....................................................................................................................
.....................................................................................................................
....................................................................................................................
.....................................................................................................................
....................................................................................................................
.....................................................................................................................
.....................................................................................................................
.....................................................................................................................
..............................................................................................................
© t.silvester 2014
Page 4
(2)
....................................................................................................... (2)
4
15
Homework 3 (Calculator not allowed)
1 a) Aaron, Ben, and Charlie receive weekly pocket. They do not know how much pocket money
they each receive. They do know that Ben gets £5 more than Aaron and that Charlie gets three times as
much as Aaron. Aaron receives £a pocket money. Write expressions using a for the amount of pocket
money received by Ben and Charlie.
Ben: .................................................. Charlie: ...................................................... (1)
b) If Ben receives £b pocket money, write expressions using b for the amount of pocket money
received by Aaron and Charlie.
Aaron: .................................................. Charlie: ...................................................... (2)
c) If Charlie receives £c pocket money, circle the correct expression for the amount of pocket money
that Ben gets.
𝑐−5
𝑐+5
𝑐
5
3c + 5
3c – 5
+5
c+ 3
(1)
3
3
3
4
2) The diagram shows a triangle inside a trapezium
a) Work out the size of angle x. Show your working.
xo
………….……………………………………………………………………………………………………… (2)
b) Work out the size of angle y. Show your working or explain your reasoning
20o
yo
…………………………………………………………………………………………………………………
3) Here are three number cards. The numbers are hidden. The mode of the three numbers is 4.
The mean of the three numbers is 8. What are the three numbers? Show your working.
(2)
?
4
?
?
.........................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................
................................................................................................................................................................................................................................ (2)
8 cm
4) Two parts of this square shape are shaded grey and two parts
are white. Show that the ratio of grey to white is 4 : 5
2
4 cm
4 cm
………………………………………………………………………………………………………..
8 cm
………………………………………………………………………………………………………..
……………………………………………………………………………………………………….. (2)
2
5 a) Solve this equation. 8 + 7j = 10j + 2
.........................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................
................................................................................................................................................................................................................................................ (1)
b) Solve this equation.
4(2𝑥+3)
5
=1
.........................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................
....................................................................................................................................................................................................................................
© t.silvester 2014
Page 5
(2)
3
15
Homework 3 (Calculator not allowed)
1) Look at the number cards
a) Which is the largest value?
06
23
12
32
41
50
...........................................................................................................................................................................
(1)
b) Which two cards are equal in value? ................................................................................................................................................... (1)
c) 23 is a cube number. 2n is also a cube number.
Write down a value for n that would make this true.
n = .....................................
(1)
d) Shade in the cards which are not square numbers
16
23
2 a) x is an odd number. Which of the values must be even
and which must be odd? Complete the table by ticking
the correct box.
(2)
b) y is an even number. Decide whether
Odd

Even

Cannot tell
𝑥𝑦
2
is odd or even.

34
43
Expression
3x
5x + 1
x2
(x – 1)(x + 1)
52
61
Even
(1)
4
Odd
3
(1)
3 a) Peter plays a guessing game at a funfair. He estimates that the probability of winning is 0.15
He plays the guessing game 20 times. How many times should he expect to win?
.................................................................................................................................................................................................................................................. (1)
b) Emma also plays the guessing game. She won 8 of the games. She estimates that the probability of
winning is 0.2. How many games did Emma play? Show your working.
.........................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................. (2)
c) The owner of the guessing game claims that the probability of winning the game is actually 0.22
Over a thousand games, customers actually win 240 times. Decide whether the owner’s claim is true
or false and explain your answer.
TRUE

FALSE
 .........................................................................................................................................................................................
................................................................................................................................................................................................................................... (1)
4) Here is a graph.
4
a) Tick the equation of the line shown.
y axis
5
y = 3x + 1
y = ½x + 1
y=x+⅓
y=x+3
y – ⅓x = 1
3y = x + 1
4
3
(1)
b) Write the equation of any line which is parallel to the x axis.
2
1
-4
-3
-2
-1
0
-1
………………………………………………………………...……………………………….
1
2
3
4
5
6
x axis
c) A graph has the equation y = 2x – 1.
Sketch the graph on the axis shown.
(1)
(1)
-2
-3
d) One of the equations in the list above passes through the
point; (2, 7). Write the equation of this line.
……………………………………………………………………………………….
© t.silvester 2014
Page 6
(1)
4
15
Homework 3 (Calculator not allowed)
1 a) Equations have different numbers of solutions. For example, x + 1 = 4 has only one solution, x = 3
but x + 2 + 3 = x + 5 is true for all values of x. Tick the correct box for each algebraic statement.
Correct for no
values of x
Correct for
one value of x
Correct for
two values of x
x3 = -27
b) Solve the equation
Correct for all
values of x
2x – 3 = 3x + 7
…………………………………………………...
4(x + 2) = 4x + 8
3+x=3–x
…………………………………………………..
x+4=x–4
x = ………………………. (1)
x2 = 16
(3)
4
2a) Here are two triangles.
The triangles are similar.
Work out the size of length, x.
4 cm
6 cm
15 cm
x = .......................... cm (1)
x cm
b) Shape A is drawn on a coordinate grid. Shape A is mapped onto Shape B by the single transformation
involving a 90o rotation clockwise about the origin. Decide whether each statement is true or false.
TRUE
FALSE
CANNOT TELL
Shape A and Shape B are congruent
Shape B has an order of rotational symmetry of 2






2
(1)
The cumulative frequency graph shows lengths of earth worms
found in a garden.
3)
a) Work out the median length
………………………………… cm
(1)
b) How many earth worms were between 30 and 36 cm in
length?
………………………………………………………………………………………………
………………………………………………………………………………………….
(2)
c) Decide whether the following statement is correct.
The shortest earth worm was 20 cm in length.
True

False

Cannot tell

(1)
4
4 a) A fair coin is flipped three times. Show that the probability of getting three Heads is ⅛.
..................................................................................................................................................................................................................................................
(1)
b) Work out the probability of getting exactly two Tails from flipping the coin three times.
..........................................................................................................................................................................................................................................................
....................................................................................................................................................................................................................................
5)
1
5000
(2)
3
is equal to 0.0002
a) Write 0.0002 in standard form
1
b) Write 50000
in standard form
© t.silvester 2014
............................................................................................................................................................... (1)
.......................................................................................................................................................... (1)
Page 7
2
15