FACTOR ANALYSIS & SPSS • First, let’s check the reliability of the scale • Go to • Analyze, • Scale and • Reliability analysis • Select the items and transfer them into the box on the right (under ‘Items) • Click on Statistics and select the analysis that you need: • • • • • Item Scale Scale if item deleted Correlations Means, etc • Then click continue, and then OK • You will see the output and the analysis you asked for • Look at Alpha Reliability Statistics Cronbach's Alpha Cronbach's Alpha Based N of Items on Standardized Items ,722 ,728 30 Acepted to be reliable • Alpha is over .70 so it is reliable enough. • No need to delete an item • But let’s see if deleting an item will make the alpha much higher Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Squared Cronbach's Item Deleted if Item Deleted Total Multiple Alpha if Item Correlation Correlation Deleted Q1 88,6117 155,671 -,358 ,550 ,751 Q2 88,0583 156,448 -,341 ,625 ,756 Q3 87,1553 141,250 ,197 ,572 ,718 Q4 87,1748 141,989 ,175 ,509 ,719 Q5 87,6893 134,471 ,331 ,426 ,709 Q6 88,3786 129,159 ,483 ,594 ,697 Q7 87,9417 133,957 ,413 ,462 ,704 Q8 88,5049 155,978 -,365 ,581 ,752 Q9 87,5146 145,174 -,011 ,365 ,732 Q10 87,2136 137,777 ,333 ,558 ,711 Q11 88,4175 130,148 ,519 ,543 ,696 Q12 87,8835 131,320 ,439 ,612 ,701 Q13 87,5825 136,677 ,340 ,529 ,710 Q14 88,0097 136,853 ,283 ,523 ,713 Q15 88,0388 134,077 ,372 ,586 ,706 Q16 87,8350 148,159 -,107 ,638 ,737 Q17 87,5825 132,775 ,507 ,592 ,700 Q18 89,0000 128,647 ,563 ,607 ,693 Q19 87,8544 132,126 ,433 ,633 ,702 Q20 87,6796 135,926 ,365 ,625 ,708 Q21 88,7184 130,302 ,540 ,620 ,696 Q22 88,2816 137,028 ,294 ,567 ,712 Q23 88,1068 150,469 -,187 ,442 ,741 Q24 88,6796 146,867 -,065 ,577 ,735 Q25 87,8641 129,432 ,583 ,686 ,693 Q26 87,9029 134,814 ,401 ,654 ,706 Q27 88,5437 131,937 ,416 ,543 ,703 Q28 88,2621 127,156 ,584 ,651 ,690 Q29 88,3592 127,958 ,580 ,584 ,691 Q30 88,6893 150,903 -,188 ,560 ,745 Factor Analysis • When do we need factor analysis? • • • • • • • • • • • to explore a content area, to structure a domain, to map unknown concepts, to classify or reduce data, to show causal relationships, to screen or transform data, to define relationships, to test hypotheses, to formulate theories, to control variables, to make inferences. Two Aproaches • 1. Exploratory factor analysis (EFA) • It is used to uncover the underlying structure of a relatively large set of variables. • The goal is to identify the underlying relationships between measured variables. • It is commonly used by researchers when developing a scale and serves to identify a set of latent constructs underlying a battery of measured variables. • It should be used when the researcher has no a priori hypothesis about factors or patterns of measured variables. • 2. Confirmatory factor analysis (CFA) • It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). • The objective of confirmatory factor analysis is to test whether the data fit a hypothesized measurement model. • This hypothesized model is based on theory and/or previous analytic research. • In CFA, the researcher first develops a hypothesis about what factors s/he believes are underlying the measures s/he has used and may impose constraints on the model based on these a priori hypotheses Using factor analysis in SPSS (EFA) • Step 1. • Go to Analyze • Select Reduction (Dimension Reduction) • Select Factor • Step 2. • Select the variables and transfer them to Variables box • • • • Step 3. Select Descriptives Click on the statistics that you need E.g. • coefficients • Significance levels • KMO and Barlett’s • Then click Continue • Step 4. Click Extraction • Select Scree Plot • Make sure • Method is Principal Component • Correlation matrix is checked • Eigenvalue is greater than 1 • Click Continue • Step 5. Click Rotation • Select Varimax • Click Continue • Step 6. Click Options • Select Sorted by Size • Make sure Exclude cases listwise is selected • Click continue • Step 7: Click OK • You will see the analysis results as Output document • A) Correlation matrix Analysing correlation matrix • If a variable has no relationship with any other variable, it should be taken out. • If a variable has a correlation of .9 or above (perfect correlation) with another variable, you should consider taking it out. B) KMO & Barlett’s Test KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Approx. Chi-Square Bartlett's Test of Sphericity ,804 1404,825 df 435 Sig. ,000 KMO shows the suitability of your data for factor analysis. 0,93 shows that this data is perfect. Above 0,8 very good 0,7-0,8 good, 0,5-0,7 medium, below 0,5, you should collect more data Bartlett shows the significance. C) Commonalities This shows the common variances. We understand to what extent the variance after factor extraction is common. E.g. For Question 1, 66% of the variance is common. Some info is missing. The present factors cannot explain all the variance Communalities Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Initial Extraction 1,000 ,665 1,000 ,729 1,000 ,801 1,000 ,804 1,000 ,538 1,000 ,707 1,000 ,567 1,000 ,635 1,000 ,498 1,000 ,753 1,000 ,619 1,000 ,731 1,000 ,753 1,000 ,673 1,000 ,717 1,000 ,730 1,000 ,664 1,000 ,760 1,000 ,743 1,000 ,784 1,000 ,691 1,000 ,717 1,000 ,786 1,000 ,702 1,000 ,764 1,000 ,772 1,000 ,689 1,000 ,677 1,000 ,626 1,000 ,647 D) Total Variance Explained Total Variance Explained Component Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 ,840 ,751 ,713 ,683 ,643 ,619 ,557 ,526 ,455 ,446 ,429 ,349 ,332 ,307 ,270 ,265 ,219 ,186 ,175 ,153 ,138 Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings % of Variance Cumulative % Total Total 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 2,799 2,503 2,376 2,276 2,145 2,065 1,856 1,754 1,518 1,486 1,430 1,165 1,108 1,024 ,901 ,882 ,731 ,621 ,582 ,509 ,459 Extraction Method: Principal Component Analysis. 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 72,610 75,114 77,490 79,766 81,910 83,975 85,830 87,585 89,102 90,589 92,019 93,184 94,291 95,315 96,216 97,098 97,829 98,450 99,032 99,541 100,000 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 % of Variance Cumulative % 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 3,132 2,895 2,814 2,699 2,544 2,218 1,896 1,384 1,360 % of Variance Cumulative % 10,440 9,649 9,380 8,997 8,480 7,394 6,321 4,614 4,535 10,440 20,089 29,470 38,467 46,947 54,341 60,662 65,276 69,811 Eigenvalues before and after rotation. There are 9 factors with eigenvalues bigger than 1. The first factor covers 29% of the variance. Rotation equals the importance of the factors Factor 1’s contribution reduces to 10% from 29%. The 9 factors explain about 70% of the total variance D) Total Variance Explained Total Variance Explained Component Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 ,840 ,751 ,713 ,683 ,643 ,619 ,557 ,526 ,455 ,446 ,429 ,349 ,332 ,307 ,270 ,265 ,219 ,186 ,175 ,153 ,138 Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings % of Variance Cumulative % Total Total 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 2,799 2,503 2,376 2,276 2,145 2,065 1,856 1,754 1,518 1,486 1,430 1,165 1,108 1,024 ,901 ,882 ,731 ,621 ,582 ,509 ,459 Extraction Method: Principal Component Analysis. 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 72,610 75,114 77,490 79,766 81,910 83,975 85,830 87,585 89,102 90,589 92,019 93,184 94,291 95,315 96,216 97,098 97,829 98,450 99,032 99,541 100,000 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 % of Variance Cumulative % 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 3,132 2,895 2,814 2,699 2,544 2,218 1,896 1,384 1,360 % of Variance Cumulative % 10,440 9,649 9,380 8,997 8,480 7,394 6,321 4,614 4,535 10,440 20,089 29,470 38,467 46,947 54,341 60,662 65,276 69,811 Eigenvalues before and after rotation. There are 9 factors with eigenvalues bigger than 1. The first factor covers 29% of the variance. Rotation equals the importance of the factors Factor 1’s contribution reduces to 10% from 29%. The 9 factors explain about 70% of the total variance D) Total Variance Explained Total Variance Explained Component Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 ,840 ,751 ,713 ,683 ,643 ,619 ,557 ,526 ,455 ,446 ,429 ,349 ,332 ,307 ,270 ,265 ,219 ,186 ,175 ,153 ,138 Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings % of Variance Cumulative % Total Total 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 2,799 2,503 2,376 2,276 2,145 2,065 1,856 1,754 1,518 1,486 1,430 1,165 1,108 1,024 ,901 ,882 ,731 ,621 ,582 ,509 ,459 Extraction Method: Principal Component Analysis. 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 72,610 75,114 77,490 79,766 81,910 83,975 85,830 87,585 89,102 90,589 92,019 93,184 94,291 95,315 96,216 97,098 97,829 98,450 99,032 99,541 100,000 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 % of Variance Cumulative % 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 3,132 2,895 2,814 2,699 2,544 2,218 1,896 1,384 1,360 % of Variance Cumulative % 10,440 9,649 9,380 8,997 8,480 7,394 6,321 4,614 4,535 10,440 20,089 29,470 38,467 46,947 54,341 60,662 65,276 69,811 Eigenvalues before and after rotation. There are 9 factors with eigenvalues bigger than 1. The first factor covers 29% of the variance. Rotation equals the importance of the factors Factor 1’s contribution reduces to 10% from 29%. The 9 factors explain about 70% of the total variance D) Total Variance Explained Total Variance Explained Component Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 ,840 ,751 ,713 ,683 ,643 ,619 ,557 ,526 ,455 ,446 ,429 ,349 ,332 ,307 ,270 ,265 ,219 ,186 ,175 ,153 ,138 Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings % of Variance Cumulative % Total Total 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 2,799 2,503 2,376 2,276 2,145 2,065 1,856 1,754 1,518 1,486 1,430 1,165 1,108 1,024 ,901 ,882 ,731 ,621 ,582 ,509 ,459 Extraction Method: Principal Component Analysis. 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 72,610 75,114 77,490 79,766 81,910 83,975 85,830 87,585 89,102 90,589 92,019 93,184 94,291 95,315 96,216 97,098 97,829 98,450 99,032 99,541 100,000 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 % of Variance Cumulative % 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 3,132 2,895 2,814 2,699 2,544 2,218 1,896 1,384 1,360 % of Variance Cumulative % 10,440 9,649 9,380 8,997 8,480 7,394 6,321 4,614 4,535 10,440 20,089 29,470 38,467 46,947 54,341 60,662 65,276 69,811 Eigenvalues before and after rotation. There are 9 factors with eigenvalues bigger than 1. The first factor covers 29% of the variance. Rotation equals the importance of the factors Factor 1’s contribution reduces to 10% from 29%. The 9 factors explain about 70% of the total variance D) Total Variance Explained Total Variance Explained Component Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 ,840 ,751 ,713 ,683 ,643 ,619 ,557 ,526 ,455 ,446 ,429 ,349 ,332 ,307 ,270 ,265 ,219 ,186 ,175 ,153 ,138 Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings % of Variance Cumulative % Total Total 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 2,799 2,503 2,376 2,276 2,145 2,065 1,856 1,754 1,518 1,486 1,430 1,165 1,108 1,024 ,901 ,882 ,731 ,621 ,582 ,509 ,459 Extraction Method: Principal Component Analysis. 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 72,610 75,114 77,490 79,766 81,910 83,975 85,830 87,585 89,102 90,589 92,019 93,184 94,291 95,315 96,216 97,098 97,829 98,450 99,032 99,541 100,000 8,663 2,648 2,232 1,491 1,408 1,257 1,163 1,056 1,025 % of Variance Cumulative % 28,876 8,827 7,441 4,970 4,694 4,190 3,876 3,521 3,415 28,876 37,703 45,143 50,113 54,808 58,998 62,874 66,396 69,811 3,132 2,895 2,814 2,699 2,544 2,218 1,896 1,384 1,360 % of Variance Cumulative % 10,440 9,649 9,380 8,997 8,480 7,394 6,321 4,614 4,535 10,440 20,089 29,470 38,467 46,947 54,341 60,662 65,276 69,811 Eigenvalues before and after rotation. There are 9 factors with eigenvalues bigger than 1. The first factor covers 29% of the variance. Rotation equals the importance of the factors Factor 1’s contribution reduces to 10% from 29%. The 9 factors explain about 70% of the total variance E) Component Matrix (factor loads) • Normally loadings bigger than 0,3 are accepted to be important • But the number of the sampling is also important • • • • For 50 : 0,722 For 100: 0,512 For 200: 0,364 For 300: 0,298 • For our data (150 participants) we can accept 0,40. • To analyze the loadings let’s look at the component matrix first Component Matrixa Component 1 2 3 4 5 6 7 8 9 Q25 ,736 -,001 ,145 -,100 ,135 -,256 -,001 ,325 -,048 Q28 ,725 -,071 ,218 ,120 ,072 -,173 -,135 ,088 ,152 Q17 ,715 -,156 ,109 ,010 -,132 ,038 ,179 ,254 -,042 Q2 -,642 ,119 ,166 ,282 ,216 -,201 ,115 ,304 -,047 Q26 ,641 -,081 -,030 ,150 ,261 -,310 -,353 -,105 -,179 Q8 -,629 ,180 ,098 ,113 ,183 -,184 -,078 ,067 ,328 Q1 -,616 ,102 ,097 ,284 ,083 -,317 ,232 ,073 -,138 Q29 ,616 ,421 ,030 ,028 ,058 -,113 ,085 ,051 -,203 Q20 ,609 -,090 ,000 -,383 ,353 -,033 ,145 ,244 -,230 Q12 ,597 -,045 ,315 ,014 -,317 ,218 -,260 -,102 ,217 Q19 ,584 -,006 ,081 -,113 ,402 -,111 ,155 -,148 ,403 Q6 ,569 ,279 ,159 ,026 -,473 -,151 ,072 -,114 -,121 Q13 ,567 -,213 ,034 ,140 -,235 -,124 ,286 ,161 ,432 Q5 ,557 -,147 ,041 -,150 -,005 ,358 -,112 ,196 -,048 Q11 ,556 ,334 ,115 ,210 -,274 -,184 -,145 -,058 -,086 Q21 ,556 ,426 ,027 -,026 ,285 ,230 -,016 -,077 ,243 Q30 -,514 ,377 ,360 -,153 ,090 ,178 ,040 -,023 -,215 Q18 ,503 ,256 ,487 ,039 ,110 -,208 -,321 -,191 ,088 Q7 ,485 ,337 -,147 ,186 -,115 ,105 ,050 ,297 -,216 Q27 ,482 ,057 ,475 -,430 ,122 -,002 ,095 ,045 -,128 Q10 ,476 -,298 ,314 ,209 -,141 ,234 ,468 ,032 ,026 Q15 ,380 ,614 -,265 ,255 ,021 ,143 ,092 -,174 -,036 Q22 ,302 ,564 -,281 ,083 ,367 ,277 ,089 ,001 ,056 Q3 ,367 -,500 ,138 ,478 ,294 ,116 ,155 -,195 -,077 Q9 -,256 ,214 ,577 -,026 -,161 ,011 ,000 -,107 -,129 Q16 -,483 ,109 ,567 ,299 ,075 -,075 -,009 ,242 ,062 Q24 -,404 ,385 ,449 -,002 ,041 ,237 ,299 -,196 ,056 Q14 ,434 ,405 -,447 ,246 -,142 -,130 ,120 ,078 ,057 Q4 ,298 -,388 ,114 ,525 ,201 ,342 -,234 -,046 -,249 Q23 -,381 ,230 ,081 ,088 -,066 ,339 -,373 ,519 ,214 Before rotation, most variables are related to the first factor (the ones over 0,40) You can also see this in the scree plot F) Scree Plot • To see the common themes of the variables under each factor, we should check the loadings after rotation • Let’s accept the ones loading above 0,40 Rotated Component Matrixa Component 1 2 3 4 5 6 7 8 9 Q15 ,813 ,141 ,108 -,093 ,030 -,015 ,014 ,075 -,095 Q22 ,746 -,094 ,075 ,116 ,018 -,144 ,035 ,323 ,082 Q14 ,684 ,141 ,006 -,047 -,346 ,190 -,144 -,047 -,071 Q7 ,589 ,151 ,094 ,265 -,117 ,172 ,061 -,235 ,128 Q29 ,550 ,367 ,073 ,393 -,008 ,085 -,010 ,004 -,142 Q21 ,528 ,208 ,276 ,198 ,071 ,043 ,046 ,487 ,086 Q18 ,085 ,770 ,105 ,182 ,154 -,016 ,089 ,291 -,011 Q11 ,391 ,624 ,133 ,055 -,043 ,175 -,002 -,140 -,066 Q26 ,137 ,555 ,088 ,291 -,421 -,143 ,326 ,117 -,186 Q28 ,096 ,541 ,151 ,317 -,241 ,314 ,202 ,233 ,018 Q6 ,318 ,526 ,263 ,100 ,077 ,339 -,146 -,240 -,225 Q2 -,111 -,177 -,749 -,093 ,201 -,116 -,006 -,078 ,233 Q1 -,093 -,145 -,718 -,196 ,199 -,088 -,050 -,169 -,065 Q12 ,011 ,500 ,564 ,018 ,049 ,335 ,138 ,080 ,147 Q16 -,231 ,114 -,559 -,093 ,450 ,049 ,091 -,024 ,358 Q8 -,172 -,079 -,513 -,333 ,151 -,189 -,210 ,231 ,263 Q5 ,091 ,056 ,503 ,391 -,110 ,169 ,214 ,014 ,185 Q20 ,116 ,004 ,198 ,805 -,190 ,040 ,055 ,148 -,146 Q25 ,153 ,406 ,068 ,645 -,272 ,261 ,033 ,107 -,004 Q27 -,056 ,276 ,254 ,642 ,281 ,114 -,052 ,158 -,114 Q24 ,059 -,120 -,179 -,159 ,776 ,000 -,085 ,133 ,011 Q30 -,024 -,124 -,199 ,011 ,665 -,326 -,134 -,087 ,131 Q9 -,163 ,232 -,116 -,039 ,615 -,028 -,062 -,136 ,037 Q13 ,053 ,182 ,125 ,080 -,294 ,757 -,011 ,185 -,034 Q10 ,026 -,002 ,178 ,207 ,148 ,700 ,378 ,005 -,153 Q17 ,151 ,201 ,266 ,454 -,179 ,513 ,158 -,057 -,029 Q4 ,006 ,109 ,137 ,018 -,106 ,019 ,864 -,075 ,097 Q3 -,059 ,037 -,005 ,057 -,125 ,274 ,781 ,169 -,250 Q19 ,131 ,198 ,132 ,281 -,148 ,231 ,050 ,689 -,195 Q23 ,005 -,097 -,082 -,139 ,128 -,116 -,094 -,083 ,840 • Now it’s time to decide the factors, their labels, and the items under each factor. • After reviewing the literature, you have decided to group the items under these categories • External attribution: Assessment measures students future and intelligence or the quality of schooling • Improvement: Assessment improves students’ learning and teachers’ teaching • Irrelevance: Assessment is ignored or perceived negatively • Affect: Assessment is enjoyable and benefits the class environment • Now, look at the questionnaire items and factor loadings and decide the factors. • At this step, we may need some qualitative decisions as well. • See which items can be grouped under the lables • (if you don’t have previously decided labels, you also need to decide the lables of the factos) • If there are some unrelated items, see whether it can fit in another factor. References • yunus.hacettepe.edu.tr/~tonta/courses/spring2008/bby208/ • Büyüköztürk, Ş. (2009). Sosyal Bilimler İçin Veri Analizi El Kitabı, Ankara:Pegem Akademi • http://www.hawaii.edu/powerkills/UFA.HTM
© Copyright 2026 Paperzz