Fibonacci Numbers and -Lucas Numbers

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2014, Article ID 505798, 4 pages
http://dx.doi.org/10.1155/2014/505798
Research Article
On the Products of π‘˜-Fibonacci Numbers and π‘˜-Lucas Numbers
Bijendra Singh, Kiran Sisodiya, and Farooq Ahmad
School of Studies in Mathematics, Vikram University Ujjain, India
Correspondence should be addressed to Farooq Ahmad; [email protected]
Received 3 January 2014; Accepted 22 May 2014; Published 12 June 2014
Academic Editor: Hernando Quevedo
Copyright © 2014 Bijendra Singh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this paper we investigate some products of π‘˜-Fibonacci and π‘˜-Lucas numbers. We also present some generalized identities on
the products of π‘˜-Fibonacci and π‘˜-Lucas numbers to establish connection formulas between them with the help of Binet’s formula.
1. Introduction
Fibonacci numbers possess wonderful and amazing properties; though some are simple and known, others find broad
scope in research work. Fibonacci and Lucas numbers cover
a wide range of interest in modern mathematics as they
appear in the comprehensive works of Koshy [1] and Vajda
[2]. The Fibonacci numbers 𝐹𝑛 are the terms of the sequence
{0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } wherein each term is the sum of the two
previous terms beginning with the initial values 𝐹0 = 0 and
𝐹1 = 1. Also the ratio of two consecutive Fibonacci numbers
converges to the Golden mean, 0 = (1 + √5)/2. The Fibonacci
numbers and Golden mean find numerous applications in
modern science and have been extensively used in number
theory, applied mathematics, physics, computer science, and
biology.
The well-known Fibonacci sequence is defined as
𝐹0 = 0,
𝐹1 = 1,
𝐹𝑛 = πΉπ‘›βˆ’1 + πΉπ‘›βˆ’2
for 𝑛 β‰₯ 2.
for 𝑛 β‰₯ 2.
πΉπ‘˜,1 = 1,
πΉπ‘˜,𝑛+1 = π‘˜πΉπ‘˜,𝑛 + πΉπ‘˜,π‘›βˆ’1 ,
where 𝑛 β‰₯ 1, π‘˜ β‰₯ 1.
(3)
The first few terms of this sequence are
{0, 1, π‘˜, π‘˜2 + 1, π‘˜2 + 2 β‹… β‹… β‹… } .
(4)
The particular cases of the π‘˜-Fibonacci sequence are as
follows.
If π‘˜ = 1, the classical Fibonacci sequence is obtained:
𝐹0 = 0,
𝐹1 = 1,
𝐹𝑛+1 = 𝐹𝑛 + πΉπ‘›βˆ’1
for 𝑛 β‰₯ 1,
(5)
{𝐹𝑛 }π‘›βˆˆπ‘ = {0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } .
If π‘˜ = 2, the Pell sequence is obtained:
𝑃0 = 0,
𝐿 1 = 1,
𝐿 𝑛 = 𝐿 π‘›βˆ’1 + 𝐿 π‘›βˆ’2
πΉπ‘˜,0 = 0,
(1)
In a similar way, Lucas sequence is defined as
𝐿 0 = 2,
The π‘˜-Fibonacci sequence introduced by Falcón and Plaza [3]
depends only on one integer parameter π‘˜ and is defined as
follows:
(2)
The second order Fibonacci sequence has been generalized in several ways. Some authors have preserved the
recurrence relation and altered the first two terms of the
sequence while others have preserved the first two terms
of the sequence and altered the recurrence relation slightly.
𝑃 = 1,
𝑃𝑛+1 = 2𝑃𝑛 + π‘ƒπ‘›βˆ’1
for 𝑛 β‰₯ 1,
{𝑃𝑛 }π‘›βˆˆπ‘ = {0, 1, 2, 5, 12, 29, 70 β‹… β‹… β‹… } .
(6)
Motivated by the study of π‘˜-Fibonacci numbers in [4], the π‘˜Lucas numbers have been defined in a similar fashion as
𝐿 π‘˜,0 = 2,
𝐿 π‘˜,1 = π‘˜,
𝐿 π‘˜,𝑛+1 = π‘˜πΏ π‘˜,𝑛 + 𝐿 π‘˜,π‘›βˆ’1 ,
where 𝑛 β‰₯ 1, π‘˜ β‰₯ 1.
(7)
2
International Journal of Mathematics and Mathematical Sciences
The first few terms of this sequence are
{2, π‘˜, π‘˜2 + 2, π‘˜3 + 3 β‹… β‹… β‹… } .
(8)
The particular cases of the π‘˜-Lucas sequence are as follows.
If π‘˜ = 1, the classical Lucas sequence is obtained:
{2, 1, 3, 4, 7, 11, 18 β‹… β‹… β‹… } .
(9)
If π‘˜ = 2, the Pell-Lucas sequence is obtained:
{2, 2, 6, 14, 34, 82 β‹… β‹… β‹… } .
2. On the Products of π‘˜-Fibonacci and
π‘˜-Lucas Numbers
Theorem 1. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛 , where 𝑛 β‰₯ 1.
Proof.
πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = [
(10)
In the 19th century, the French mathematician Binet devised
two remarkable analytical formulas for the Fibonacci and
Lucas numbers [2]. The same idea has been used to develop
Binet formulas for other recursive sequences as well. The wellknown Binet’s formulas for π‘˜-Fibonacci numbers and π‘˜-Lucas
numbers, see [3–5], are given by
πΉπ‘˜,𝑛 =
π‘Ÿ1 𝑛 βˆ’ π‘Ÿ2 𝑛
,
π‘Ÿ1 βˆ’ π‘Ÿ2
(11)
𝐿 π‘˜,𝑛 = π‘Ÿ1 𝑛 + π‘Ÿ2 𝑛 ,
π‘˜ βˆ’ √ π‘˜2 + 4
π‘Ÿ2 =
.
2
=
1
[π‘Ÿ 4𝑛 βˆ’ π‘Ÿ2 4𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
Theorem 2. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛+1 βˆ’ 1, where 𝑛 β‰₯ 1.
πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+1
(12)
(13)
=[
=
π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛
] [π‘Ÿ1 2𝑛+1 + π‘Ÿ2 2𝑛+1 ]
π‘Ÿ1 βˆ’π‘Ÿ2
1
[π‘Ÿ 4𝑛+1 + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+1 βˆ’ π‘Ÿ1 2𝑛+1 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+1 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(16)
2𝑛
We also note that
=
π‘Ÿ1 + π‘Ÿ2 = π‘˜,
π‘Ÿ1 π‘Ÿ2 = βˆ’ 1,
1
2𝑛
2𝑛
[π‘Ÿ 4𝑛 + (π‘Ÿ1 π‘Ÿ2 ) βˆ’ (π‘Ÿ1 π‘Ÿ2 ) βˆ’ π‘Ÿ2 4𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(15)
= πΉπ‘˜,4𝑛 .
which are given by
π‘˜ + √ π‘˜2 + 4
,
π‘Ÿ1 =
2
=
Proof.
where π‘Ÿ1 , π‘Ÿ2 are roots of characteristic equation
π‘Ÿ2 βˆ’ π‘˜π‘Ÿ βˆ’ 1 = 0,
π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛
] [π‘Ÿ1 2𝑛 + π‘Ÿ2 2𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
(14)
π‘Ÿ1 βˆ’ π‘Ÿ2 = βˆšπ‘˜2 + 4.
There are a huge number of simple as well as generalized identities available in the Fibonacci related literature
in various forms. Some properties for common factors of
Fibonacci and Lucas numbers are studied by Thongmoon
[6, 7]. The π‘˜-Fibonacci numbers which are of recent origin
were found by studying the recursive application of two
geometrical transformations used in the well-known fourtriangle longest-edge partition [3], serving as an example
between geometry and numbers. Also in [8], authors established some new properties of π‘˜-Fibonacci numbers and π‘˜Lucas numbers in terms of binomial sums. Falcón and Plaza
[9] studied 3-dimensional π‘˜-Fibonacci spirals considering
geometric point of view. Some identities for π‘˜-Lucas numbers
may be found in [9]. In [10] many properties of π‘˜-Fibonacci
numbers are obtained by easy arguments and related with
so-called Pascal triangle. The aim of the present paper is to
establish connection formulas between π‘˜-Fibonacci and π‘˜Lucas numbers, thereby deriving some results out of them.
In the following section we investigate some products of
π‘˜-Fibonacci numbers and π‘˜-Lucas numbers. Though the
results can be established by induction method as well, Binet’s
formula is mainly used to prove all of them.
(π‘Ÿ π‘Ÿ )
1
[π‘Ÿ 4𝑛+1 βˆ’ π‘Ÿ2 4𝑛+1 ] + 1 2
(π‘Ÿ βˆ’ π‘Ÿ )
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(π‘Ÿ1 βˆ’ π‘Ÿ2 ) 2 1
= πΉπ‘˜,4𝑛+1 βˆ’ (βˆ’1)2𝑛
= πΉπ‘˜,4𝑛+1 βˆ’ 1.
Theorem 3. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+2 = πΉπ‘˜,4𝑛+2 βˆ’ π‘˜, where 𝑛 β‰₯ 1.
Proof.
πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+2
=[
π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛
] [π‘Ÿ1 2𝑛+2 + π‘Ÿ2 2𝑛+2 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
=
1
[π‘Ÿ 4𝑛+2 + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+2 βˆ’ π‘Ÿ1 2𝑛+2 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+2 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
=
(π‘Ÿ π‘Ÿ )
1
[π‘Ÿ 4𝑛+2 βˆ’ π‘Ÿ2 4𝑛+2 ] βˆ’ 1 2
[π‘Ÿ 2 βˆ’ π‘Ÿ2 2 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(π‘Ÿ1 βˆ’ π‘Ÿ2 ) 1
2𝑛
2𝑛
= πΉπ‘˜,4𝑛+2 βˆ’ (π‘Ÿ1 π‘Ÿ2 ) (π‘Ÿ1 + π‘Ÿ2 )
= πΉπ‘˜,4𝑛+2 βˆ’ (βˆ’1)2𝑛 π‘˜
= πΉπ‘˜,4𝑛+2 βˆ’ π‘˜.
(17)
International Journal of Mathematics and Mathematical Sciences
3
Theorem 4. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+3 = πΉπ‘˜,4𝑛+3 βˆ’ (π‘˜2 + 1), where 𝑛 β‰₯ 1.
Theorem 7. πΉπ‘˜,2𝑛+2 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+2 + π‘˜, where 𝑛 β‰₯ 1.
Proof.
Theorem 8. πΉπ‘˜,2𝑛+2 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛+3 βˆ’ 1, where 𝑛 β‰₯ 1.
πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+3
=[
3. Generalized Identities on the Products of
π‘˜-Fibonacci and π‘˜-Lucas Numbers
π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛
] [π‘Ÿ1 2𝑛+3 + π‘Ÿ2 2𝑛+3 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
Theorem 9. πΉπ‘˜,π‘š 𝐿 π‘˜,𝑛 = πΉπ‘˜,π‘š+𝑛 βˆ’ (βˆ’1)π‘š πΉπ‘˜,π‘›βˆ’π‘š , for 𝑛 β‰₯ π‘š + 1,
π‘š β‰₯ 0.
1
=
[π‘Ÿ 4𝑛+3 + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+3 βˆ’ π‘Ÿ1 2𝑛+3 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+3 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
2𝑛
(π‘Ÿ π‘Ÿ )
1
=
[π‘Ÿ 4𝑛+3 βˆ’ π‘Ÿ2 4𝑛+3 ] + 1 2
[π‘Ÿ 3 βˆ’ π‘Ÿ1 3 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(π‘Ÿ1 βˆ’ π‘Ÿ2 ) 2
(18)
π‘Ÿ βˆ’π‘Ÿ
= πΉπ‘˜,4𝑛+3 βˆ’ (βˆ’1) [ 1 2 ] [π‘Ÿ1 2 + π‘Ÿ2 2 + π‘Ÿ1 π‘Ÿ2 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
2𝑛
Proof.
πΉπ‘˜,π‘š 𝐿 π‘˜,𝑛
=[
= πΉπ‘˜,4𝑛+3 βˆ’ (𝐿 π‘˜,2 βˆ’ 1)
= πΉπ‘˜,4𝑛+3 βˆ’ (π‘˜2 + 1) .
Theorem 5. πΉπ‘˜,2π‘›βˆ’1 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛 + 1, where 𝑛 β‰₯ 1.
π‘Ÿ1 π‘š βˆ’ π‘Ÿ2 π‘š
] [π‘Ÿ1 𝑛 + π‘Ÿ2 𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
=
1
[π‘Ÿ π‘š+𝑛 + π‘Ÿ1 π‘š π‘Ÿ2 𝑛 βˆ’ π‘Ÿ1 𝑛 π‘Ÿ2 π‘š βˆ’ π‘Ÿ2 π‘š+𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
=
1
1
[π‘Ÿ1 π‘š+𝑛 βˆ’ π‘Ÿ2 π‘š+𝑛 ] +
[π‘Ÿ π‘š π‘Ÿ 𝑛 βˆ’ π‘Ÿ1 𝑛 π‘Ÿ2 π‘š ]
π‘Ÿ1 βˆ’ π‘Ÿ2
π‘Ÿ1 βˆ’ π‘Ÿ2 1 2
= πΉπ‘˜,π‘š+𝑛 βˆ’ [
Proof.
πΉπ‘˜,2π‘›βˆ’1 𝐿 π‘˜,2𝑛+1
=[
π‘Ÿ1
2π‘›βˆ’1
βˆ’ π‘Ÿ2
π‘Ÿ1 βˆ’ π‘Ÿ2
2π‘›βˆ’1
π‘Ÿ1 𝑛 π‘Ÿ2 π‘š βˆ’ π‘Ÿ1 π‘š π‘Ÿ2 𝑛
]
π‘Ÿ1 βˆ’ π‘Ÿ2
π‘š
] [π‘Ÿ1 2𝑛+1 + π‘Ÿ2 2𝑛+1 ]
=
1
[π‘Ÿ 4𝑛 + π‘Ÿ1 2π‘›βˆ’1 π‘Ÿ2 2𝑛+1 βˆ’ π‘Ÿ1 2𝑛+1 π‘Ÿ2 2π‘›βˆ’1 βˆ’ π‘Ÿ2 4𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(19)
=
(π‘Ÿ π‘Ÿ )
π‘Ÿ
π‘Ÿ
1
[π‘Ÿ1 4𝑛 βˆ’ π‘Ÿ2 4𝑛 ] + 1 2
[ 2 βˆ’ 1 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
π‘Ÿ2
(π‘Ÿ1 βˆ’ π‘Ÿ2 ) π‘Ÿ1
2𝑛
2π‘›βˆ’1
= πΉπ‘˜,4𝑛 βˆ’ (π‘Ÿ1 π‘Ÿ2 )
= πΉπ‘˜,4𝑛 + 1.
= πΉπ‘˜,π‘š+𝑛 βˆ’ (π‘Ÿ1 π‘Ÿ2 ) [
π‘Ÿ1 π‘›βˆ’π‘š βˆ’ π‘Ÿ2 π‘›βˆ’π‘š
]
π‘Ÿ1 βˆ’ π‘Ÿ2
= πΉπ‘˜,π‘š+𝑛 βˆ’ (βˆ’1)π‘š πΉπ‘˜,π‘›βˆ’π‘š .
(21)
For different value of π‘š, we have different results:
If π‘š = 0 then πΉπ‘˜,0 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛 βˆ’ πΉπ‘˜,𝑛 = 0,
𝑛β‰₯1
If π‘š = 1 then πΉπ‘˜,1 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛+1 + πΉπ‘˜,π‘›βˆ’1 ,
𝑛β‰₯2
or 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛+1 + πΉπ‘˜,π‘›βˆ’1
Theorem 6. πΉπ‘˜,2𝑛+1 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+1 + 1, where 𝑛 β‰₯ 1.
If π‘š = 2 then πΉπ‘˜,2 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛+2 βˆ’ πΉπ‘˜,π‘›βˆ’2 ,
or 𝐿 π‘˜,𝑛 =
Proof.
(22)
𝑛β‰₯3
πΉπ‘˜,𝑛+2 βˆ’ πΉπ‘˜,π‘›βˆ’2
and so on.
π‘˜
πΉπ‘˜,2𝑛+1 𝐿 π‘˜,2𝑛
=[
π‘Ÿ1 2π‘›βˆ’1 βˆ’ π‘Ÿ2 2π‘›βˆ’1
] [π‘Ÿ1 2𝑛 + π‘Ÿ2 2𝑛 ]
π‘Ÿ1 βˆ’π‘Ÿ2
=
1
[π‘Ÿ 4𝑛+1 + π‘Ÿ1 2𝑛+1 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+1 βˆ’ π‘Ÿ2 4𝑛+1 ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
(20)
=
(π‘Ÿ π‘Ÿ )
1
[π‘Ÿ1 4𝑛+1 βˆ’ π‘Ÿ2 4𝑛+1 ] + 1 2
(π‘Ÿ βˆ’ π‘Ÿ )
π‘Ÿ1 βˆ’ π‘Ÿ2
(π‘Ÿ1 βˆ’ π‘Ÿ2 ) 1 2
Theorem 10. πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛+π‘š = πΉπ‘˜,3𝑛+π‘š βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛+π‘š , for 𝑛 β‰₯ 1,
π‘š β‰₯ 0.
Proof.
2𝑛
= πΉπ‘˜,4𝑛+1 + (βˆ’1)2𝑛
= πΉπ‘˜,4𝑛+1 + 1.
In the same manner, we obtain the following results.
πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛+π‘š
=[
=
π‘Ÿ1 𝑛 βˆ’ π‘Ÿ2 𝑛
] [π‘Ÿ1 2𝑛+π‘š + π‘Ÿ2 2𝑛+π‘š ]
π‘Ÿ1 βˆ’ π‘Ÿ2
1
[π‘Ÿ 3𝑛+π‘š + π‘Ÿ1 𝑛 π‘Ÿ2 2𝑛+π‘š βˆ’ π‘Ÿ1 2𝑛+π‘š π‘Ÿ2 𝑛 βˆ’ π‘Ÿ2 3𝑛+π‘š ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
4
International Journal of Mathematics and Mathematical Sciences
=
𝑛+π‘š
βˆ’ π‘Ÿ1 𝑛+π‘š
1
𝑛 π‘Ÿ
[π‘Ÿ1 3𝑛+π‘š βˆ’ π‘Ÿ2 3𝑛+π‘š ] + (π‘Ÿ1 π‘Ÿ2 ) [ 2
]
π‘Ÿ1 βˆ’ π‘Ÿ2
π‘Ÿ1 βˆ’ π‘Ÿ2
= πΉπ‘˜,3𝑛+π‘š βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛+π‘š
=
π‘š
βˆ’ π‘Ÿ2 π‘š
1
2𝑛 π‘Ÿ
[π‘Ÿ1 4𝑛+π‘š βˆ’ π‘Ÿ2 4𝑛+π‘š ] + (π‘Ÿ1 π‘Ÿ2 ) [ 1
]
π‘Ÿ1 βˆ’ π‘Ÿ2
π‘Ÿ1 βˆ’ π‘Ÿ2
= πΉπ‘˜,4𝑛+π‘š + πΉπ‘˜,π‘š .
(27)
= πΉπ‘˜,3𝑛+π‘š βˆ’ πΉπ‘˜,𝑛+π‘š .
(23)
If π‘š = 0 then
For different values of π‘š, we have various results:
If π‘š = 0 then πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,3𝑛 βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛 ,
𝑛β‰₯1
If π‘š = 1 then πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,3𝑛+1 βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛+1 ,
For different values of π‘š, we have various results:
𝑛β‰₯1
πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛 ,
𝑛β‰₯1
If π‘š = 1 then πΉπ‘˜,2𝑛+1 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+1 + 1,
𝑛β‰₯1
If π‘š = 2 then πΉπ‘˜,2𝑛+2 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+2 + π‘˜,
𝑛β‰₯1
(28)
and so on.
and so on.
(24)
Conflict of Interests
Similarly we have the following result.
Theorem 11. πΉπ‘˜,2𝑛+π‘š 𝐿 π‘˜,𝑛 = πΉπ‘˜,3𝑛+π‘š + (βˆ’1)𝑛 πΉπ‘˜,𝑛+π‘š , for 𝑛 β‰₯ 1,
π‘š β‰₯ 0.
The authors declare that there is no conflict of interests
regarding the publication of this paper.
Theorem 12. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+π‘š = πΉπ‘˜,4𝑛+π‘š βˆ’ πΉπ‘˜,π‘š , for 𝑛 β‰₯ 1, π‘š β‰₯ 0.
References
Proof.
[1] T. Koshy, Fibonacci and Lucas Numbers with Applications,
Wiley-Interscience, New York, NY, USA, 2001.
[2] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section,
Ellis Horwood, Chichester, UK, 1989.
[3] S. Falcón and Á. Plaza, β€œOn the Fibonacci π‘˜-numbers,” Chaos,
Solitons and Fractals, vol. 32, no. 5, pp. 1615–1624, 2007.
[4] S. Falcon, β€œOn the π‘˜-Lucas numbers,” International Journal of
Contemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039–
1050, 2011.
[5] C. Bolat, A. Ipeck, and H. Kose, β€œOn the sequence related to
Lucas numbers and its properties,” Mathematica Aeterna, vol. 2,
no. 1, pp. 63–75, 2012.
[6] M. Thongmoon, β€œIdentities for the common factors of
Fibonacci and Lucas numbers,” International Mathematical
Forum, vol. 4, no. 7, pp. 303–308, 2009.
[7] M. Thongmoon, β€œNew identities for the even and odd Fibonacci
and Lucas numbers,” International Journal of Contemporary
Mathematical Sciences, vol. 4, no. 14, pp. 671–676, 2009.
[8] N. Yilmaz, N. Taskara, K. Uslu, and Y. Yazlik, β€œOn the binomial
sums of π‘˜-Fibonacci and π‘˜-Lucas sequences,” in Proceedings of
the International Conference on Numerical Analysis and Applied
Mathematics (ICNAAM ’11), pp. 341–344, September 2011.
[9] S. Falcón and Á. Plaza, β€œOn the 3-dimensional π‘˜-Fibonacci
spirals,” Chaos, Solitons and Fractals, vol. 38, no. 4, pp. 993–1003,
2008.
[10] S. Falcón and Á. Plaza, β€œThe π‘˜-Fibonacci sequence and the
Pascal 2-triangle,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp.
38–49, 2007.
πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+π‘š
=[
π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛
] [π‘Ÿ1 2𝑛+π‘š + π‘Ÿ2 2𝑛+π‘š ]
π‘Ÿ1 βˆ’ π‘Ÿ2
=
1
[π‘Ÿ 4𝑛+π‘š + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+π‘š βˆ’ π‘Ÿ1 2𝑛+π‘š π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+π‘š ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
=
π‘š
βˆ’ π‘Ÿ1 π‘š
1
2𝑛 π‘Ÿ
[π‘Ÿ1 4𝑛+π‘š βˆ’ π‘Ÿ2 4𝑛+π‘š ] + (π‘Ÿ1 π‘Ÿ2 ) [ 2
]
π‘Ÿ1 βˆ’ π‘Ÿ2
π‘Ÿ1 βˆ’ π‘Ÿ2
= πΉπ‘˜,4𝑛+π‘š βˆ’ πΉπ‘˜,π‘š .
(25)
For different values of π‘š, we have various results:
If π‘š = 0 then πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛 ,
𝑛β‰₯1
If π‘š = 1 then πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛+1 βˆ’ 1,
𝑛 β‰₯ 1 and so on.
(26)
Theorem 13. πΉπ‘˜,2𝑛+π‘š 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+π‘š + πΉπ‘˜,π‘š , for 𝑛 β‰₯ 1, π‘š β‰₯ 0.
Proof.
πΉπ‘˜,2𝑛+π‘š 𝐿 π‘˜,2𝑛
=[
=
π‘Ÿ1 2𝑛+π‘š βˆ’ π‘Ÿ2 2𝑛+π‘š
] [π‘Ÿ1 2𝑛 + π‘Ÿ2 2𝑛 ]
π‘Ÿ1 βˆ’ π‘Ÿ2
1
[π‘Ÿ 4𝑛+π‘š + π‘Ÿ1 2𝑛+π‘š π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+π‘š βˆ’ π‘Ÿ2 4𝑛+π‘š ]
π‘Ÿ1 βˆ’ π‘Ÿ2 1
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014