Section 3.6 Combining Functions Let f and g be two functions. 1. Sum: ( f g )( x) f ( x) g ( x) 2. Difference: ( f g )( x) f ( x) g ( x) 3. Product: ( fg )( x) f ( x) g ( x) f f ( x) 4. Quotient: ( x) , g ( x) 0 g ( x) g The domains are the set of real numbers common to the domain of f and g (in f , g can’t be g equal to 0). Example 1: Let f ( x) x 2 3x 1 and g ( x) 3 x 10 . Find: a. (g – f)(x) b. (f + g)(x) c. (f + g)(1) d. (f g)(0) Section 3.6 – Combining Functions 1 e. (gg)(x) f. g (0) f (0) g. f(0) + g(-1) h. g(3) + g(-3) Section 3.6 – Combining Functions 2 Example 2: Let f ( x) a. Find f ( x) g ( x). 1 1 and g ( x) . 10 x 15 x b. Find ݂ሺݔሻ݃ሺݔሻ Example 3: Perform the indicated operation: 5 1 9 6 x 4 x 8x Section 3.6 – Combining Functions 3 The Composition of Functions The composition of the function f with g is denoted by f g and is defined by the equation ( f g )( x) f ( g ( x)) The domain of the composition f g is the set of all x such that x is in the domain of g (the “inside” function) and g(x) is in the domain of f (the “outside” function). Example 4: Let f ( x) 4 x2 and g ( x ) 5 x . Find: x3 1 2 a. ( g f )(0) First: Second: b. f ( f (1)) First: Second: Section 3.6 – Combining Functions 4 2 Example 5: Let f ( x) x 1 and g ( x ) 2 x 5 , find: a. ( f g )( x ) . b. g f x c. f f x d. f f 0 Section 3.6 – Combining Functions 5 Example 6: Let f ( x) 5 x and g ( x) 4 x 2 , find a. g f ( x) . b. g ( f (3)) Section 3.6 – Combining Functions 6
© Copyright 2026 Paperzz