TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY Elias Métral (25 + 5 min, 25 slides) Introduction and motivation “Low-frequency” regime High-frequency regime Numerical applications for a LHC collimator (vs. Burov-Lebedev2002 and Bane1991) SPS MKE kicker (vs. Burov-Lebedev and 2-wire measurements) Review of Zotter’s theory ( For a circular beam pipe) Any number of layers Any beam velocity Any frequency Unification of 3 regimes (BL, “thick-wall” and Bane) Any σ (conductivity), ε (permittivity) and μ (permeability) Conclusion and work in progress Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 1/25 INTRODUCTION AND MOTIVATION (1/2) THE MOTIVATION: THE LHC GRAPHITE COLLIMATORS f 1 8 kHz First unstable betatron line Skin depth for graphite (ρ = 10 μΩm) Collimator thickness dth 2.5 cm f 8 kHz 1.8 cm d th f One could think that the classical “thick- Z thick wall f wall” formula would be about right Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 1 b3 2/25 f INTRODUCTION AND MOTIVATION (2/2) In fact it is not The resistive impedance is ~ 2 orders of magnitude lower at ~ 8 kHz ! A new physical regime was revealed by the LHC collimators Usual regime : d th , b dth New regime : dth b , d th beam beam dth b beff b b beff b when δ d th Induced Induced current current Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 3/25 N.A. FOR A LHC COLLIMATOR (1/4) Zy 1. 10 m COMPARISON ZOTTER2005-BUROV&LEBEDEV2002 1 meter long round LHC collimator 10 b 2 mm dC Classical thick-wall 1. 10 8 C 10 μm Im 1. 106 10000 f 1 8 kHz Re 100 d Cu 5 μm BL’s results (real and imag. parts) in black: dots without and lines with copper coating 100 10000 1. 10 6 1. 10 8 Cu 17 nm 1. 10 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 10 4/25 f Hz N.A. FOR A LHC COLLIMATOR (2/4) GLOBAL PLOT FROM ZOTTER2005 Zy m 1. 10 8 1. 10 6 1 meter long round LHC collimator Low beam velocity case (e.g. PSB : 1.05 , 0.3) Same as Bane1991 10000 Negative 100 AC DC / 1 j 0.8 ps AC conductivity 1000 1. 10 6 1. 10 9 1. f Hz 12 10 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 5/25 N.A. FOR A LHC COLLIMATOR (4/4) Ratio 2 1.75 Re Zy, Zotter Re Zy, BL 1.5 Im Z y, Zotter Im Z y,BL Im Z y 1.25 @ fc 1 0 Z 0 0.75 If 2 f c 0.5 0.25 1 1000 1. 106 1. 109 1. 10 12 Zy M 0.4 Re Zy, Zotter Re Zy, Bane 1.5 Im Zy, Zotter Im Z y, Bane 2 DC2 b 1/ 4 0.94 THz 2 1 f Hz Ratio 2 1.75 c 1/ 4 3 m 0.2 1.25 0 1 0.75 0.5 0.2 0.25 1 1000 1. 106 1. 109 1. 10 12 f Hz f THz 0.25 0.5 0.75 1 1.25 1.5 1.75 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 2 6/25 N.A. FOR A SPS MKE KICKER Zy M 0.8 m Zotter Burov Lebedev 0.6 2 wire meas. 0.4 0.2 f GHz 0.5 1 1.5 2 2.5 3 3.5 4 0.2 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 7/25 REVIEW OF ZOTTER’S THEORY (1/17) 1) Maxwell equations In the frequency domain, all the field quantities are taken to be proportional to e j t Combining the conduction and displacement current terms yields curl H j c E with B H curl E j H 0 0 r 1 j tanM div H 0 div E c 0 0 r j 2 f 0 r Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 8/25 REVIEW OF ZOTTER’S THEORY (2/17) 2) Scalar Helmholtz equations for the longitudinal field components Using curl curl grad div , one obtains (using the circular cylindrical coordinates r, θ, z) 1 r r r r 1 2 1 r r 2 2 2 c H z 2 2 z r r r 1 r r r r 1 2 2 1 2 2 2 c Ez j z 2 z z r The homogeneous equation can be solved by separation of variables H z or Ez Z z R r Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 9/25 REVIEW OF ZOTTER’S THEORY (3/17) e j m m is called the azimuthal mode number (m=1 for pure dipole oscillations) and Z z e j k z k is called the wave number Reinserting the time dependence ( e j t ), the axial motion is seen to be a wave proportional to e j t k z , with phase velocity c / k which may in general differ from the beam velocity b b c 1 d d R m2 r 2 2 R (r) is given by r d r d r r R 0 with k 1 2 Radial propagation constant The solutions of this differential equation are the modified Bessel functions I r and K r m m Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 10/25 REVIEW OF ZOTTER’S THEORY (4/17) Conclusion for the homogeneous scalar Helmholtz equations • For pure dipole oscillations excited by a horizontal cosine modulation propagating along the particle beam, one can write the solutions for Hz and Ez as H z sin e j t k z C1 I1 r C2 K1 r Ez cos e j t k z D1 I1 r D2 K1 r C1,2 and D1,2 are constants to be determined • Sine and cosine are interchanged for a purely vertical excitation (see source fields) • Only the solutions of the homogeneous Helmholtz equations are needed since all the regions considered are source free except the one containing the beam where the source terms have been determined separately by Gluckstern (CERN yellow report 2000-011) See slide 14 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 11/25 REVIEW OF ZOTTER’S THEORY (5/17) 3) Transverse field components deduced from the longitudinal ones using Maxwell equations (in a source-free region) G Z0 H Ez Ez 0 cos Er Er 0 cos G G 0 cos Gz Gz 0 sin Gr Gr 0 sin E E 0 sin Gz 0 d E z 0 jk Er 0 2 r dr d Gz 0 j k Ez 0 E 0 2 r dr E z 0 d Gz 0 jk Gr 0 2 r dr d Ez 0 j k Gz 0 G 0 2 r dr Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 12/25 REVIEW OF ZOTTER’S THEORY (6/17) 4) Source of the fields: Ring-beam distribution Infinitesimally short, annular beam of charge Q Nb e and radius a traveling with velocity c along the z axis Charge density in the frequency domain P jk z r , , z; r a cos e a2 where P Q f rev x is the horizontal dipole moment Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 13/25 REVIEW OF ZOTTER’S THEORY (7/17) Longitudinal source terms (from Gluckstern) Valid for a r b , i.e. in the vacuum between the beam and the pipe = region (1) (2) Layer 1 Ez( s ) r , , z j C cos F1 u (1) Vacuum Gz( s ) r , , z j C sin TE I1 u Beam with a P jk z C I s e 1 a 0 2 2 F1 u K1 u TM I1 u b u d TE kr s ka 1 1 2 and TM will be determined by the boundary conditions at b and d Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 14/25 REVIEW OF ZOTTER’S THEORY (8/17) 5) The total (i.e. resistive-wall + space charge) horizontal impedance Zx j f P j P dz E x b B y e j k z Zx (s) dz E a, , z 2 (s) b Br a, , z 2 jk z e j L Z 0 I1 s K1 s TM I1 s f 2 2 a with L the length of the resistive pipe and Z 0 120 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 15/25 REVIEW OF ZOTTER’S THEORY (9/17) The space-charge impedance is obtained with a perfect conductor at r = b, i.e. when 1 and 0 , with 1 1 1 TM Z SC x I1 x1 K1 x1 x1 kb j L Z 0 I12 s K1 s K1 x1 f 2 2 a I1 s I1 x1 • If x 1 1 TE I1 x1 K1 x1 Z SC x x I1 x 2 and 1 K1 x x j L Z0 1 1 f 2 2 2 2 a b Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 16/25 REVIEW OF ZOTTER’S THEORY (10/17) The resistive-wall impedance is obtained by subtracting the spacecharge impedance from the total impedance Z xRW j L Z 0 I12 s K1 x1 1 1 f 2 2 a I1 x1 Only 1 remains to be determined (by field matching) Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 17/25 REVIEW OF ZOTTER’S THEORY (11/17) 6) Field matching At the interfaces of 2 layers (r = constant) all field strength components have to be matched, i.e. in the absence of surface charges and currents the tangential field strengths E and z , have to be continuous H z , Then the radial components of the displacement Dr and of the induction B are also continuous, i.e. matching of the radial r components is redundant At a Perfect Conductor (PC) : E z E 0 d G / d r 0 z At a Perfect Magnet (PM) : Gz G 0 d E / d r 0 z At r Infinity Only K1 x is permitted as I1 x diverges Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 18/25 REVIEW OF ZOTTER’S THEORY (12/17) General form of the field strengths in region (p) K u I1 u p 1 p ( p) Ez 0 u p E p p K x I1 x p 1 p K u I1 u p 1 p ( p) Gz 0 u p G p p K x I1 x p 1 p up p r ( p) ( p) E u d G j k z 0 p z0 E( 0p ) u p p p up d up ( p) ( p) G u d E j k p z0 z0 G( 0p ) u p p p up d up (Ep, Gp, αp and ηp) are constants to be determined x p p bp b1 b b2 d Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 … 19/25 Z REVIEW OF ZOTTER’S THEORY (13/17) 7) General 1-layer formula RW x j L Z 0 I12 s K1 x1 x12 x22 P1 Q1 P1 k Q a 2 2 I1 x1 x2 k x1 2 x1 x2 a Beam radius b Inner radius of the pipe L Length of the object 0 0 r 1 j tanM c 0 0 r x1 kb s ka j 2 f k 2 f c k 1 2 x2 b 1 P1 f 2 P1 k Q P1 k Q Q Q2 2 P2 1 2 Q I1 x1 K x I x Q1 1 1 P2 1 2 I1 x1 I1 x 2 K1 x1 Q2 K1 x2 K1 x 2 1 Q2 2 P2 1 2 Z 0 120 1 2 α2 and η2 are determined by the boundary conditions at the outer chamber wall r = d Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 20/25 REVIEW OF ZOTTER’S THEORY (14/17) d , or PC or PM (2) Layer 1 d 2INF 2INF 0 Perfect Conductor (PC) y d (1) Vacuum K1 y I1 x2 PC 2 I1 y K1 x2 Beam PC 2 a b K1 y I 1 x 2 I1 y K1 x2 Perfect Magnet (PM) 2PM 2PC 2PM 2PC d Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 21/25 REVIEW OF ZOTTER’S THEORY (15/17) 8) General 2-layer formula Z RW x j L Z 0 I12 s K1 x1 E2 2 1 2 2 a I1 x1 where the parameters (E2, α2) are 2 parameters out of 4 (α2, η2, E2 and G2) which have to be found by solving the matching equations at each layer boundary. The 4 unknowns are given by the following system of 4 linear equations 2 x 2 E 2 1 2 2 x1 x 2 G 2 1 2 P1 k x1 E 2 1 2 k x1 x 2 2 G 2 Q2 2 P2 2 x 2 G 2 1 2 2 x1 x 2 Q1 P1 P1 E 2 1 2 k x1 G 2 1 2 k x1 x 2 2 E 2 Q2 2 P2 3 x 4 E 2 K 32 2 I 32 3 x 3 x 4 2 G 2 Q32 2 P32 2 x 3 E 2 K 32 2 I 32 2 x 3 x 4 3 G 2 K 32 2 I 32 3 x 4 G 2 K 32 2 I 32 3 x 3 x 4 2 E 2 Q32 2 P32 2 x 3 G 2 K 32 2 I 32 2 x 3 x 4 3 E 2 K 32 2 I 32 Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 Q4 3 P4 1 3 Q4 3 P4 1 3 22/25 REVIEW OF ZOTTER’S THEORY (16/17) P1, 2 Q4 I1 x1, 2 I1 x1, 2 Q1, 2 K1 x4 K1 x 4 P4 K1 x1, 2 K1 x1, 2 I1 x4 I 1 x4 K 32 x1, 2 1, 2 b 1, 2,3 k 1 1, 2,3 1, 2,3 2 K1 x3 K1 x2 I 32 x3 2 d I1 x3 I1 x2 Q32 K1 x3 K1 x 2 P32 I1 x3 I1 x2 x4 3 d 1,2,3 refer to the vacuum (between the beam and the first layer), the first and second layer respectively Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 23/25 REVIEW OF ZOTTER’S THEORY (17/17) (3) Layer 2 e , or PC or PM (2) Layer 1 (1) Vacuum e 3INF 3INF 0 Beam a b d e Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 24/25 CONCLUSION AND WORK IN PROGRESS Zotter2005’s formula has been compared to other approaches from Burov-Lebedev2002, Tsutsui2003 (theory and HFSS simulations) and Vos2003 (see Ref. 6 below) Similar results obtained in the new (Burov-Lebedev2002) low-frequency regime Work in Progress Multi-bunch or “long” bunch Wave velocity Beam velocity Finite length of the resistive beam pipe REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] B. Zotter, CERN-AB-2005-043 (2005) R.L. Gluckstern, CERN yellow report 2000-011 (2000) E. Métral, CERN-AB-2005-084 (2005) A. Burov and V. Lebedev, EPAC’02 (2002) K. L.F. Bane, SLAC/AP-87 (1991) F. Caspers et al., EPAC’04 (2004) H. Tsutsui, LHC-PROJECT-NOTE-318 (2003) L. Vos, CERN-AB-2003-005-ABP (2003) and CERN-AB-2003-093-ABP (2003) Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 25/25
© Copyright 2026 Paperzz