P425/1 Pure math Paper 1 3 hours GREENHILL ACADEMY MOCK EXAMINATIONS 2016 UGANDA ADVANCED CERTIFICATE OF EDUCATION INSTRUCTIONS TO CANDIDATES: - Attempt all the eight questions in section A and any five questions from section B. - Clearly show all the necessary working - Begin each answer on a fresh sheet of paper - Silent, simple non-programmable scientific calculators may be used. SECTION A (40 MARKS) 1. 2. 3. 4. 5. 6. 7. Find the fourth root of 8 6i The 5th term of an arithmetic progression is 12 and the sum of the first five terms is 100. Determine the first term and the common difference 2 x Solve the inequality 0.6 3.6 to four significant figures3 Find the angle subtended by the plane 2 x 3 y 7 z 4 0 and a line x 4 5 y z 1 . 3 5 2 Express cos x 3 sin x in the form Rcosx , hence, solve the equation cos x 3 sin x 0 , for 0 o x 360 o . 10 Inx dx Evaluate: 1 x A is a point 1, 3 and B is the point 4, 6 . P is the variable point which moves such __ 2 8. __ 2 that AP PB 34 . Show that the locus of P describes the circle, hence state the centre and the radius of the circle dy Solve the differential equation x1 y y 0 given that y 1 when x e . dx SECTION B (60MARKS) 9a) Use a substitution t tan to solve the equation 3 cos 5 sin 1 , for 2 0 o x 360 o . b) Show that for any triangle ABC, sin A sin B sin C 4 cos A B C cos cos . 2 2 2 10a) Given that z x iy is a complex number, find the equation of the locus b) Solve the equation z 3 1 0 11a) Find: dx 4 5 cos x 4 using t tan 1 1 x 2 dx . b) Evaluate: 12a) Prove by induction that 2r 1 1 x z 1 i 1. z 2 3i n r 1 2 n 4n 2 1 . 3 1 ax 1 4 x 12 x 2 cx 3 . . . . Find the values of the constants a, b, c . 1 bx b) Given that 13a) Given vectors a 3i 2j k and b 2i j 4k . show that 𝒂 and 𝒃 are perpendicular. b) Two planes have equation x 2 y 2 z 2 and 3𝑥 − 3𝑦 + 6𝑧 = 3. Find i) The acute angle between the two planes ii) 14a) The line of intersection in vector form of the two planes. Find the equation of a circle through the points A0, 1 B2, 3 and C0, 5 . b) Given that x 1 2 sin and y 3 2 cos . i) Show that x and y represents a circle. Hence its state the centre and radius ii) Find the equation of the common chord of intersection of the circles in (b) (i) above and a circle 𝑥 2 + 𝑦 2 − 2𝑥 + 6𝑦 = 0 15. Sketch the curve 16a) Find the particular solution of the equation x b) 3 2x x(3 x) dy y 2 given y(2) 4. dx The rate at which mangoes fall off a tree is directly proportional to the number of mangoes remaining on the tree. a certain tree initially had 100 fruits, 2hours later the fruits had reduced to 80mangoes 1 (i) Find the numbers of mangoes which had remained after 3 2 hours (ii) calculate the time it takes for just 1 mango to remain END S 6 MARKING GUIDE MOCK TERM 2 2016 z 8 6i 1. z 8 2 6 2 10 Let 6 8 z 10(cos 0.205 i sin 0.205 ) tan 1 ( ) 0.205 z 1 4 1 10 4 (cos 0.205 i sin 0.205 ) 1 1 4 1 10 4 (cos( 1 .0.205 ) i sin( 1 0.205 ) 10 4 (0.99 0.16i ) 4 4 5th 12 2. s5 100 a 4d 12............1 5 (2a 4d ) 100 2 a 2d 20.........2 a 28 and d 4 (0.6)−2𝑥 < 3.6 3. ln 0.6 2 x ln 3.6 (2 x)( 0.51082) 1.28093 x 1.254 4. x 4 5 y z 1 3 5 2 x 4 3 , let y 5 5 z 1 2 2(4 3 ) 3(5 5 ) 7(1 2 ) 4 0 34 5 x 24.4, y 29, z 14.6 cos x 3 sin x R cos( x ) 5. cos x 3 sin x R cos cos x Rs 3in sin x R cos 1, R sin 3 tan 3andR 2 5 60o , R 5 cos x 3 sin x 5 cos( x 60o ) 5 cos( x 60o ) 0 ( x 60o ) cos 1 (0) x 60o 900 ,2700 x 300 ,2100 6 1 ln xdx 1 x let ..t ln x 10 1 dx x dx xdt dt 10 1 1 ln xdx x ln10 0 1 t.xdt x ln10 t 2 2 0 7. (ln 10) 2 2.651(3dp) 2 letP ( x, y ) ( x1) ( y 3) ( x4) ( y 6) 34 2 2 2 2 x 2 2 x 1 y 2 6 y 9 x 2 8 x 9 y 2 12 y 36 34 2 x 2 2 y 2 10 x 14 y 12 0 x 2 y 2 5x 7 y 6 0 2 f 5, 2 g 7 f 2.5, g 3.5 r (2.5) 2 (3.5) 2 6 3.54 Circle of center (2.5,3.5) and radius 3.54 8. dy y0 dx dy x(1 y ) y dx (1 y ) 1 dy dx y x 1 1 1 1 (1 )dy dx (1 )dy dx y y x y x y ln y ln x C x(1 y ) y 1, x e1 1 0 1 C C 0 9a) y ln y ln x yx e y 3 cos 5 sin 1 1 t2 t2 5 1 3 2 2 1 t 1 t 2 2 3 3t 5t (1 t 2 ) 4 7t 2 t tan 2 7 2 2 2 or tan 2 7 7 37.10 0r 142.9 0 2 2 0 74.1 ,285.80 b) L.H .S sin A sin B sin A A A BC B C cos 2 sin( ) cos( ) 2 2 2 2 A A 180o A B C 2 sin cos 2 sin( ) cos( ) 2 2 2 2 A A A B C 2 sin cos 2 sin( 900 ) cos( ) 2 2 2 2 A A A BC 2 sin cos 2 cos cos( ) 2 2 2 2 A A BC 2 cos sin cos( ) 2 2 2 2 sin A 180o ( B C ) B C 2 cos sin cos( ) 2 2 2 2 cos A BC B C cos( ) cos( ) 2 2 2 A B C 2 cos cos 2 2 2 A B C 2 cos 2 cos cos R.H .S 2 2 2 z 1 i 1, let z x yi z 2 3i 2 cos 10(a) x yi 1 i 1 x yi 2 3i x 12 y 12 x 22 y 32 x 12 y 12 1 x 22 y 32 x 2 2x 1 y 2 2 y 1 x 2 4x 4 y 2 6 y 9 8 y 6 x 11 0 f ( z) z 3 1 b) f (1) (1) 3 1 0 Z 1..root Z 1 factor Z 2 Z 1 Z 1 z3 1 Z3 Z2 Z 2 1 Z2 Z Z 1 Z 1 forZ Z 1 2 Z 11a) (1) 1 4(1)(1) 1 3 Z i 2 2 2 dx 4 5 cos x x 1 x 2dt 1 t2 t tan , dt sec 2 dx dx cos x 2 2 2 1 t2 1 t2 2dt 2 dx 2dt 2dt 2dt 1 t 2 2 2 2 4 5 cos x (3 t )(3 t ) 1 t 4 4t 5 5t 9t 4 5(1 t 2 ) 2 A B let 2 A(3 t ) B (3 t ), (3 t )(3 t ) 3 t (3 t ) 1 1 A B 3 3 2dt 1 dt 1 dt 1 1 (3 t )(3 t ) 3 3 t 3 3 t 3 ln( 3 t ) 3 ln( 3 t ) ln A 1 1 x ln A(9 t 2 ) ln A(9 tan 2 ) 3 3 2 b) 4 1 1 1 x dx, let ..1 x p x ( p 1) 2 dx 2( p 1)dp 4 3 3 1 1 1 3 1 1 x dx 2 p .2( p 1)dp 22 (1 p )dp 2 p ln p2 23 ln 3 (2 ln 2) 2(1 ln 2 ln 12a) ∑𝑛𝑟=1(2𝑟 − 1)2 = 1 3 𝑛(4𝑛2 − 1) 1 12 33 52 .... (2n 1) 2 n(4n 2 1) 3 for..n 1 LHS 1, RHS 1 hold . for..n 1 1 for..n 2 LHS 1 9 10, RHS (2)(15) 10 hold . for..n 2 3 assume.it .holds. for.n k 1 12 33 52 .... (2k 1) 2 k (4k 2 1) 3 it .holds. for.n k 1 1 12 33 52 .... (2k 1) 2 (2(k 1) 1) 2 k (4k 2 1) (2k 1)) 2 3 1 1 1 RHS k (4k 2 1) (2k 1) 2 (2k 1) k (2k 1) (2k 1) (2k 1) 2k 2 k 6k 3 3 3 3 1 1 RHS (2k 1) 2k 2 5k 3 (2k 1)( k 1)( 2k 3) 3 3 for., n 2, k 1 2, k 1 1 12 33 (3)( 2)(5) 10, holds. for.n 2 3 for.n 3 k 1 3, k 2 1 12 33 52 (5)(3)(7) 35, holds. for.n 3 3 it holds for n=1, n=2,n=3,Therefore it holds for all positive values of n b) 1+𝑎𝑥 1+𝑏𝑥 = 1 − 4𝑥 + 12𝑥 2 + 𝑐𝑥 3 (`1 ax)(1 bx) 1 (1)( 2) (1)( 2)( 3) 1 ax 1 (1)(bx) (bx) 2 (bx) 3 . . . 2! 3! 2 2 3 3 (1 ax)(1 bx b x b x . . .) (1 bx b 2 x 2 b 3 x 3 ax abx 2 ab 2 x 3 ) 1 (a b) x (b ab) x 2 (ab 2 b 3 ) x 3 2 a b 4 b ab 12.and . ab 2 b 3 C 2 a b 4 b (b 4)b 12 2 b b 4b 12 b 3 a 1 C (1)(9) (27) 36 a 3i 2 j k b 2i j 4k a.b 0 2 13a) 2 3 2 2 . 1 0 2 4 628 0 b) 00 𝒂 = 3𝑖 + 2𝑗 + 𝑘, 𝒃 = −2𝑖 − 𝑗 + 4𝑘 . 1 n1 2 2 3 n2 3 6 n1 .n2 n1 n2 cos 1 3 2 . 3 12 2 2 (2) 2 32 (32 ) 6 2 cos 2 6 3 6 12 9 54 cos 15 3 54 cos 15 132.9 0 3 54 int er sec tion cos 1 let ...z x 2 y 4 2 3 x 3 y 6 3 x 2 y 2 4 .....................(1) 3 x 3 y 3 6 ...................( 2) 3eqn(1) 2eqn(2) 3 x 6 y 6 12 6 x 6 y 6 12 9 x 12 x 4 3 4 1 y 2 3 3 4 4 3 3 x 0 1 1 y 2 r 2 z 3 1 3 0 2 y 2 4 14.(a ) A(0,1) , B( 2,3) and C(0,5) generally, x 2 y 2 2 fx 2 gy d 0 0 2 12 2 f (0) 2 g (1) d 0 2 g d 1..........................(1) 2 2 32 2 f (2) 2 g (3) d 0 4 f 6 g d 13...............(2) 0 2 52 2 f (0) 2 g (5) d 0 10 g d 25.....................(3) f 0, g 3 d 5 x 2 y 2 2(0) x 2(3) y 5 0 x 2 y 2 3 y 5 0 Is the equation of the circle (b) 𝑥 = 1 + √2 𝑠𝑖𝑛 𝜃 and 𝑦 = −3 + √2 𝑐𝑜𝑠 𝜃. (i) x 1 y5 .......and ......... cos 2 2 2 2 sin cos 1 sin ( x 1) 2 ( y 5) 2 2 2 2 ( x 1) 2 ( y 5) 2 4 this is the eqn of the circle of centre (1,-5) with radius 2 (ii) ( x 1) 2 ( y 5) 2 4 x 2 2 x 1 y 2 10 y 25 4 x 2 y 2 2 x 10 y 22...........(1) x 2 y 2 2 x 6 y 0..................( 2) eqn..(1) eqn(2) 11 2 Is the eqn of the common chord 4 y 22 y 15 Intercepts: For y 0, x 1 , thus 1, 0 . 15 Turning points: dy 3 3x x 2 3x 3 2 x 3 0 2 dx 3x x 2 9 x 3x 6 x 9 x 6 x 9 0 , x 1x 3 0 2 2 x 3, x 1 and y L Sign of dy dx Very popular but low scores, need to do better. x 3 3x 2 6 x 9 0 1 y3 3 R L x 1 1 1, 3 min 3, max 3 As y , x 0, x 3 so, vertical Asymptotes: x 0, x 3 As x , y 0 . y 0 is the horizontal asymptote. Region table: x 3x 3 3 x y x 1 1 x 0 0 x3 x3 16(a) dy dy dy 1 y2 x 2 y dx dx dx 2 y x dy 1 2 y x dx ln( 2 y) ln x ln A 1 Ax, 2 y 1 1 y (2) 4. 2A A 2 4 For 1 1 x 2 y 4 (b) Let N= number of mangoes present at any time t dN dN N kN dt dt dN dN kdt kdt ln N kt C N e kt C N N kt N Ae ...where.. A e C x at t 0, N = 100 100 A N 100e kt ., 80 at t 1, N = 80 80 100e k k ln 0.2231 100 N 100e 0.2231t (i ) N ?, t 3.5 N 100e ( 0.2231)( 3.5) N 46mangoes (ii )t ?, N 1 1 100e 0.2231t 1 ) t 20 min 100 20minutes will elapse for 1 mango to remain 0.2251t ln(
© Copyright 2026 Paperzz