Open Journal of Discrete Mathematics, 2013, 3, 60-69 http://dx.doi.org/10.4236/ojdm.2013.31013 Published Online January 2013 (http://www.scirp.org/journal/ojdm) Dominating Sets and Domination Polynomials of Square of Paths A. Vijayan1, K. Lal Gipson2 1 Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India 2 Department of Mathematics, Mar Ephraem College of Engineering and Technology, Kanayakumari District, India Email: [email protected], [email protected] Received August 30, 2012; revised September 30, 2012; accepted October 8, 2012 ABSTRACT Let G = (V, E) be a simple graph. A set S V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let Pn2 be the square of the Path Pn and let D Pn2 , i denote the family of all dominating sets of Pn2 with cardinality i. Let d Pn2 , i D Pn2 , i . In this paper, we obtain a recursive formula for d Pn2 , i . Using this re- cursive formula, we construct the polynomial, D Pn2 , x n n i 5 d Pn2 , i xi , which we call domination polynomial of Pn2 and obtain some properties of this polynomial. Keywords: Domination Set; Domination Number; Domination Polynomials G1 , , Gm , then 1. Introduction Let G = (V, E) be a simple graph of order |V| = n. For any vertex v V, the open neighbourhood of is the set N v u V uv E and the closed neighbourhood of is the set N v N v v . For a set S V, the open neighbourhood of S is N S U nS N v and the closed neighbourhood of S is N S N S S . A set S V is a dominating set of G, if N[S] = V, or equivalently, every vertex in V-S is adjacent to at least one vertex in S. The domination number of a graph G is defined as the minimum size of a dominating set of vertices in G and it is denoted as G . A simple path is a path in which all its internal vertices have degree two, and the end vertices have degree one and is denoted by Pn . Definition 1.1.: Let D G , i be the family of dominating sets of a graph G with Cardinality i and let d G, i D G, i . Then the domination polynomial D G, x of G is defined as V G D G , x i G d G , i x i . where G is the domination number of G. Result 1.2. [1]: If a graph G consists of m components Copyright © 2013 SciRes. D G, x D G1 , x D Gm , x . Result 1.3. [1]: Let G1 and G2 be graphs of order n1 and n2 respectively. Then 1 x D G1 G2 , x 1 x 1 1 n n2 1 D G1 , x D G2 , x . Result 1.4. [1]: Let G be a bipartite graph with bipartition (X,Y). Then G contains a matching that saturates every vertex in X if and only if for all S V N S S . Result 1.5. [1]: Let G be a graph of order n. Then for n every 0 i , we have d G, i d G , i 1 . 2 Result 1.6. [1]: For any graph G of order n, G K1 n . Result 1.7. [1]: For any graph G of order n and n m 2n , we have n 2nm . d G K1 , m 2 m n Hence D G K1 , x x n x 2 . n Definition 1.8: The Square of a graph with the same set of vertices as G and an edge between two vertices if OJDM A. VIJAYAN, K. L. GIPSON and only if there is a path of length at most 2 between them. The second power of a graph is also called its Square. Let Pn2 be the square of the path Pn (2nd power )with n vertices. Let D Pn2 , i be the family of dominating 2 n sets of the graph P d P ,i D P ,i 2 n . D Pn2 , x n i 5 d Pn2 , i xi Y D P , i 1 , 2 n 6 Y contains at least one vertex labeled n – 6, n – 7 or n – 8. If n 6 Y , then Y D Pn25 , i 1 , a contradiction. Hence n – 7 or n – 8 Y, but then in this case, Y x D Pn2 , i , for any x [n], also a contradiction. Lemma 2.5.: 1) If D Pn21 , i 1 D Pn23 , i 1 Let D Pn2 , i be the family of dominating sets of Pn2 with cardinality i. We investigate the dominating sets of Pn2 . We need the following lemma to prove our main results in this section. n Lemma 2.1. [3]: Pn2 By Lemma 2.1 and 5 the definition of domination number, one has the following Lemma: Lemma 2.2. D Pn2 , i if and only if i n or n i . A simple path is a path in which all its internal 5 vertices have degree two, and the end vertices have degree one. The following Lemma follows from observation [2]. Lemma 2.3. [2]: If a graph G contains a simple path of length 5k – 1, then every dominating set of G must contain at least k vertices of the path. In order to find a dominating set of Pn2 , with cardinality i, we only need to consider D P , i 1 , D P , i 1 , i 1 . The families of these dominating sets D Pn21 , i 1 , D Pn2 2 , i 1 , 2 n 3 2 n4 and D Pn25 can be empty or otherwise. Thus, we have eight combinations, whether these five families are empty or not. Two of these combinations are not possible (Lemma 2.5(i), & (ii)). Also, the combination that Proof: Suppose that Y D Pn25 , i 1 . Since 2. Main Result or equal to x and x for the smallest integer greater than or equal to x. Also, we denote the set 1, 2, , n by [n], throughout this paper. Y D Pn25 , i 1 . the domination polynomial of the graph Pn2 [2]. In the next section, we construct the families of the dominating sets of the square of paths by recursive method. As usual we use x for the largest integer less than does not need to be considered because it implies that D Pn2 , i (See Lemma 2.5 (iii)). Thus we only need to consider five combinations or cases. We consider those cases in Theorem 2.7. Lemma 2.4.: If Y D Pn2 6 , i 1 , and there exists x [n] such that Y x D Pn2 , i , then We call the polynomial n D Pn2 4 , i 1 D Pn25 , i 1 with cardinality i and let 2 n 61 D Pn21 , i 1 D Pn2 2 , i 1 D Pn23 , i 1 Copyright © 2013 SciRes. then D Pn2 2 , i 1 2) If D Pn21 , i 1 , D Pn23 , i 1 then D Pn2 2 , i 1 , 3) If DP DP , i 1 , D P , i 1 , , i 1 , then D P , i D Pn21 , i 1 , D Pn2 2 , i 1 , 2 n 3 2 n 5 2 n4 2 n Proof: 1) Since D Pn21 , i 1 D Pn23 , i 1 , by Lemma n 3 2.2, i 1 n 1 (or) i 1 . In either case, we 5 have D Pn2 2 , i 1 . 2) Suppose that D Pn2 2 , i 1 , so by Lemma 2.2, n 2 we have i 1 n 2 or i 1 If i 1 n 2 , 5 then i 1 n 3 . Therefore D Pn23 , i 1 , a contradiction. 3) Suppose that D Pn2 , i , Let Y D Pn2 , i . Thus, at least one vertex labeled n or n – 1 or n – 2 is in Y. If n Y, then by Lemma (2.3), at least one vertex labeled n – 1, n – 2, n – 3, n – 4 or n – 5 is in Y. If n – 1 Y or OJDM A. VIJAYAN, K. L. GIPSON 62 n – 2 Y, then Y – n D Pn21 , i 1 , a contradiction. If n – 3 Y, then Y – n D Pn2 2 ,i 1 , a contra- diction. Now, suppose that n – 1 Y. Then, by Lemma 2.3, at least one vertex labeled n – 2, n – 3, n – 4, n – 5 or n – 6 is in Y. If n – 2 Y or n – 3 Y, then Y – n 1 D Pn2 2 , i 1 a contradiction. If n – 4 Y, then Y – n 1 D P , i 1 , a contradiction. If n – 5 Y, then Y – n 1 D Pn2 4 , i 1 , a con2 n 3 D Pn2 , i , a contradiction. n 2 2 So i 1 , and since D Pn , i , we have 5 n n 2 5 i 5 1 , which implies that n = 5k and i = k for some kN. () If n = 5k and i = k for some kN, then by Lemma 2.2, D P , i 1 and D P 2 n 5 , i 1 DP , i 1 , if and only if n = 5k + 2 and D Pn23 , i 1 , D Pn2 4 , i 1 , 2 n 5 5k 2 i for some kN; 5 4) D Pn21 , i 1 , D Pn2 2 , i 1 , DP , i 1 if and only if i = n – 3. 5) D P , i 1 , D P , i 1 , D P , i 1 , D P , i 1 , and D P , i 1 if and only if D Pn23 , i 1 , D Pn2 4 , i 1 , and 2 n 5 2 n 1 2 n2 2 n 3 , 2 n4 2 n 5 n 1 5 1 i n 4 . D Pn24 , i 1 D Pn25 , i 1 , by Lemma 2.2, n 3 i 1 n 2 or i 1< . 5 If n 1 n 3 i 1 , then i 1 5 5 and hence D Pn2 2 , i 1 , a contradiction. So i 1 n 2 . Also, D Pn21 , i 1 . Therefore i n 1 . Therefore i n . But i n . Hence i = n. () If i = n, then by lemma 2.2, D Pn2 2 , i 1 D Pn23 , i 1 then D P , i 1 . 3) () Since D P ,i 1 , by Lemma 2.2, D P , i 1 D P , i 1 2 n4 2 n 5 2 n 1 2 n 1 n 1 i 1 n 1 or i 1 . 5 If i 1 n 1 , then i 1 n 2 , by Lemma 2.2, Proof: 1) () Since D Pn2 2 , i 1 D Pn23 , i 1 if i = n; 3) D Pn21 , i 1 , D Pn2 2 , i 1 , D Pn25 , i 1 then D Pn21 , i 1 if and only 2 n4 2) () Since if and only if n = 5k and i = k for some k N; 2) D Pn2 2 , i 1 D Pn23 , i 1 D Pn2 4 , i 1 2 n 3 and D Pn2 5 , i 1 . 1) D Pn21 , i 1 D Pn22 , i 1 D Pn23 , i 1 2 n4 D P , i 1 D P , i 1 tradiction. Therefore, D Pn2 , i . Lemma 2.6.: If D Pn2 , i , then D Pn21 , i 1 D Pn2 2 , i 1 tradiction If n – 6 Y, then Y – n 1 D Pn25 , i 1 , a con- D Pn2 2 , i 1 D Pn23 , i 1 D P , i 1 D P , i 1 2 n 1 2 n2 2 n4 by Lemma 2.2, n 2 i 1 n 1 or i 1 5 If i 1 n 1 , then i n and by Lemma 2.2, Copyright © 2013 SciRes. a contradiction. D P , i 1 D P , i 1 , 2 n 3 D Pn24 , i 1 D Pn25 , i 1 , n 1 Therefore i 1. 5 n 2 2 But i 1 , because D Pn 2 , i 1 . 5 n 2 Therefore i 1 . 5 OJDM A. VIJAYAN, K. L. GIPSON n 2 n 1 Hence, 1 i 1. 5 5 This holds only if n = 5k + 2 and So n 1 5 i 1 n 5 5k 2 i k 1 , 5 for some k N. 5k 2 () If n = 5k + 2 and i for some k N, 5 then by Lemma 2.2, DP , i 1 , D P , i 1 D Pn21 , i 1 , D Pn2 2 , i 1 , 2 n 3 2 n4 and n 1 and hence 1 i n 4 . 5 n 1 () If 1 i n 4 , then the result follows 5 from Lemma 2.2. n Theorem 2.7.: For every n 6 and i , 5 1) If n 5 i 1 n 5 or i 1 . 5 n 2 5 1 i n 1 . , i 1 D Pn21 ,i 1 , D Pn2 2 , i 1 , 2 n 3 2 n4 , i 1 , D P , i 1 D P , i 1 , then by ap- D Pn25 , i 1 . 5) () Since 2 n 1 D P , i 1 , and plying Lemma (2.2), 2 n 3 2 n 5 D Pn2 4 , i 1 D Pn25 , i 1 and D Pn21 , i 1 then D Pn2 , i n . 3) If DP , i 1 , D P , i 1 D Pn21 , i 1 , D Pn2 2 ,i 1 , 2 n 3 2 n4 and D Pn25 , i 1 then D Pn2 , i 3,8, , n 4, n 2 , X 1 n , X 2 n 1 , X 3 n 2 X 1 D Pn23 , i 1 , n 3 n 3 5 i 1 n 3 , 5 i 1 n 4 Copyright © 2013 SciRes. D Pn2 2 , i 1 D Pn23 , i 1 n 1 n 2 5 i 1 n 1 , 5 i 1 n 2 , n 3 5 i 1 n 5 . D Pn2 , i 3,8, , n 7, n 2 . 2 n2 and then and DP D Pn25 , i 1 , i 1 , D P 2 n4 2) If n 5 Therefore i 1 is not possible. Therefore 5 i 1 n 5 . Therefore i n 4 . Therefore i n 3 . Since D Pn2 3 , i 1 , i 1 n 4 . Therefore i n 3 . Hence i n 3 . () if i n 3 then By Lemma 2.2, DP 2 n 3 and Since D Pn2 2 , i 1 , by Lemma 2.2, D P , i 1 D P , i 1 4) () Since D Pn25 , i 1 , by Lemma 2.2, D Pn21 , i 1 D Pn2 2 , i 1 D Pn25 , i 1 . 63 DP (2.1) , i 1 , X 2 D Pn2 4 , i 1 , X 3 D Pn25 , i 1 4) If D Pn23 , i 1 , 2 n2 D Pn21 , i 1 , OJDM A. VIJAYAN, K. L. GIPSON 64 then 5) If D Pn2 , i n x , x n . D Pn21 , i 1 , D Pn2 2 , i 1 , D Pn2 3 , i 1 , D Pn2 4 , i 1 , D Pn2 5 , i 1 then D Pn2 , i X 1 n , X 2 n 1 , X 3 n 2 X 1 D Pn21 , i 1 , X 2 D Pn2 2 , i 1 , X 3 D Pn23 , i 1 , n 2 X 4 and Proof: 1) Since 2 n4 DP 2 n 3 By Lemma 2.6 (iii), n = 5k + 2 and 5k 2 i k 1 5 for some k N. Since X 3,8, ,5k 2 D P52k , k , Also, if X D P 2 n 5 Now let Y D P52k 2 , k 1 . Then 5k + 2, or 5k + 1 is in Y. If 5k + 2 Y, then by Lemma 3, at least one vertex labeled 5k + 1, 5k or 5k – 1 is in Y. If 5k + 1 or 5k is in Y, then Y 5k 2 D P52k 1 , k , a contradiction; because D P52k 1 , k . Hence 5k – 1 Y, 5k Y and 5k + 1 Y. Therefore, Y X 5k 2 for some X D P52k , k ; Copyright © 2013 SciRes. 2 5 k 1 ,k then Therefore, we have X 2 D P , i 1 , X 3 D P , i 1 D P X 5k 2 D P52k 2 , k 1 . D Pn25 , i 1 . 3,8 5k 2,5k 1 , X1 n , X 2 n 1 , X 3 n 2 , i 1 X 5k 1 D P52k 2 , k 1 2 n4 and D Pn24 , i 1 D Pn25 , i 1 2 n4 , i 1 , D P D Pn21 , i 1 , D Pn2 2 ,i 1 , 3) We have D Pn2 2 , i 1 D Pn23 , i 1 D Pn2 , i n . and D P , i 1 by Lemma 2.6 i) n = 5k, and i = k for some k N. n elements. Clearly the set 3,8, , n 7, n 2 has 5 By the definition of Pn2 , 3 has joining with 1, 2, 4, 5, and 8 has joining with 6, 7, 9, 10. Therefore 3 and 8 covers all the vertices up to10for n = 10. Proceeding like this, we obtain that 3,8, , n 7, n 2 covers all Vertices n are up to n. The other sets with cardinality 5 2, 7,12, , n 3 , 4,9, , n 1 etc. In the first set, n 3 does not cover the vertex n. The second set does not cover the vertex 1and so on. Therefore 3,8, , n 7, n 2 is the only dominatn k i. ing set of cardinality 5 2) We have (2.2) By Lemma 2.6 (ii), we have i = n. So, D P , i 1 D P , i 1 2 n 5 D Pn21 , i 1 . D Pn21 , i 1 D Pn2 2 , i 1 2 n 3 X 3 , n X 4 X 3 , n 1 X 5 X 4 , X 4 D Pn2 4 , i 1 , X 5 D Pn25 , i 1 2 5k 2 X 1 D Pn23 , i 1 , (2.3) , k 1 that is Y 3,8, ,5k 2,5k 1 . Now suppose that 5k + 1 Y and 5k + 2 Y. By Lemma 2.3 at least one vertex labeled 5k, 5k – 1 or 5k – 2 is in Y. If 5k Y then Y 5k 1 D P52k , k 3,8, ,5k 2 , a contradiction because 5k X for all X D P52k , k . Therefore 5k – 1, or 5k – 2 is in Y, but 5kY. Thus Y X 5k 1 for some X D P52k 1 , k . So OJDM A. VIJAYAN, K. L. GIPSON , i 1 , X 65 D P52k 2 , k 1 3,8, ,5k 2,5k 1 , X 1 n , X 2 n 1 , X 3 n 2 X 1 D Pn23 , i 1 , X 2 D Pn24 3 (2.4) D Pn25 , i 1 D P52k 2 , k 1 From (2.3) and (2.4), D Pn2 , i 3,8, , n 4, n 2 , X 1 n , X 2 n 1 , X 3 n 2 X 1 D Pn23 , i 1 , X 2 D Pn2 4 , i 1 , X 3 D Pn25 , i 1 . 4) If DP DP , i 1 , , i 1 , D P , i 1 , 2 n 3 2 n2 2 n 1 DP 2 n 5 Now let X 3 D P , i 1 then n – 3, n – 4 or n – 5 is in X3. If n – 3 or n – 4 or n – 5 X3, then 2 n 3 X 3 n 2 D Pn2 , i . , i 1 . X D P , i 1 , so at least one vertex labeled Now let X 4 D Pn2 4 , i 1 , then n – 4, or n – 5 or n – 6 is in X4. If n – 4 X4, then X 4 n D Pn2 , i . If n – 5 X4, then X 4 n 1 D Pn2 , i . If n – 6 X4, then X 4 n 2 D Pn2 , i . Thus we have D P , i 1 , D P , i 1 , 2 n 3 X 2 n 1 D Pn2 , i . by Lemma 2.6 (iv) i = n – 1. Therefore D Pn2 , i n x x n . 5) D Pn21 , i 1 , D Pn2 2 , i 1 , Let X 2 D Pn2 2 , i 1 , then n – 2 or n – 3 or n – 4 is inX2. If n – 2, n – 3 or n – 4 X2, then 2 n4 2 n2 Let 1 n – 1, n – 2 or n – 3 is in X1. If n – 1, n – 2 or n – 3 X1, then X 1 n D Pn2 , i . X n , X n 1 , X n 2 X D P , i 1 , X D P , i 1 , X D P , i 1 n 2 X X , n X X , n 1 X X X D P , i 1 , X D P 1 2 3 4 2 n 1 1 3 4 2 n2 2 3 5 4 Now suppose that n – 1 Y, n Y then by Lemma 2.3, at least one vertex labeled n – 2, n – 3 or in Y. If n – 2 Y then Y X 4 X 3 n 2 for some X 4 D Pn2 4 , i 1 , X 3 D Pn2 3 , i 1 2 n 3 3 2 n4 4 2 n 5 5 , i 1 D Pn2 , i (2.5) DP , i 1 , X DP , i 1 X 4 D Pn2 4 , i 1 , X 5 D Pn2 5 , i 1 , . So D Pn2 , i X 1 n , X 2 n 1 , X 3 n 2 X 1 D Pn21 , i 1 , X 2 D Pn2 2 , i 1 , X 3 D Pn23 , i 1 4 Lemma 2.3 one vertex labeled n – 6, n – 7, in Y. If n – 4 Y, then Y X 5 X 4 n 1 for Now suppose that, n – 5 Y & n – 4 Y, then by n 2 X X 3 , n X 4 X 3 , n 1 X 5 X 4 X 4 2 n4 5 2 n 5 (2.6) From (2.5) & (2.6) n 2 X DP , i 1 , X DP , i 1 D Pn2 , i X 1 n , X 2 n 1 , X 3 n 2 X 1 D Pn21 , i 1 , X 2 D Pn2 2 , i 1 , X 3 D Pn23 , i 1 4 X 3 , n X 4 X 3 , n 1 X 5 X 4 X 4 3. Domination polynomial of Pn2 Let D P , x 2 n n n i 5 2 n d P ,i x i be the domination polynomial of a path Pn2 . In this section, we derive the Copyright © 2013 SciRes. 2 n4 5 2 n 5 expression for D Pn2 , x . Theorem 3.1. a) If D Pn2 , i is the family of dominating sets with cardinality i of Pn2 , then OJDM A. VIJAYAN, K. L. GIPSON 66 d Pn2 , i d Pn21 , i 1 d Pn2 2 , i 1 d Pn23 , i 1 d Pn24 , i 1 d Pn25 , i 1 where d Pn2 , i D Pn2 , i . b) For every n 6 , D Pn2 , x x D Pn21 , x D Pn2 2 , x D Pn23 , x D Pn24 , x D Pn25 , x with the initial values D P , x x D P , x x D P , x x D P , x x , D P , x x 2x , 2 1 2 2 2 3x 3x , 2 3 3 2 4 4 4 x3 6 x 2 2 x , 2 5 5 5 x 4 10 x3 8 x 2 x . 2 2 n1 2 n 1 Since 2 n 2 n 5 2 n2 2 n 3 D Pn2 4 , i 1 D Pn2 5 , i 1 0 Therefore D Pn2 , i D Pn21 , i 1 , i 1 , i 1 0 Therefore d P , i d P , i 1 . Therefore, In this case d P , i d Pn21 , i 1 2 n 2 n1 2 n D Pn2 , i n 1 X 2 , n 2 X 3 , X 4 X 3 n 2 , X 4 X 3 n , holds. 3) Suppose (iii) of Theorem 2.7 holds. From (v), we have 2 n2 X 5 X 4 n 1 2 n 3 2 n4 D Pn21 , i 1 D Pn2 2 , i 1 , 2 n4 D P , i 1 D P , i 1 D P , i 1 D P , i 1 D P , i 1 D P , i 1 0 Since 2 n 3 D Pn2 , i n X 1 X 1 D Pn21 , i 1 . , i 1 D P , i 1 D P Therefore, in this case d P , i d Pn2 5 , i 1 holds. 2) Suppose (ii) of Theorem 2.7 holds. From (v), we have D Pn2 , i n 1 X 5 X 5 D Pn25 , i 1 . DP DP Therefore D Pn2 , i D Pn25 , i 1 . Therefore d Pn2 , i d Pn2 5 , i 1 . Proof: a) Using (i), (ii), (iii), (iv) and (v) of Theorem 2.7, we prove (a) part. 1) Suppose (i) of Theorem 2.7 holds. From (v), we have D Pn23 , i 1 D Pn2 4 , i 1 0 X 2 D Pn2 2 , i 1 , X 3 D Pn23 , i 1 , X 4 D Pn2 4 , i 1 and X 5 D Pn25 , i 1 . Therefore Since d P d P 2 n 3 Therefore 2 n 5 D Pn2 , i D Pn2 2 , i 1 D Pn2 3 , i 1 D Pn2 4 , i 1 D Pn2 5 , i 1 , i 1 d P , i 1 . d Pn2 , i d Pn2 2 , i 1 D Pn21 , i 1 , D Pn21 , i 1 0 . . 2 n4 , i 1 . 4) Suppose (v) of Theorem 2.7 holds. From (v), we have D Pn2 , i n X 1 , n 1 X 2 , n 2 X 3 , X 4 X 3 n 2 , X 4 X 3 n , X 5 X 4 n 1 X 1 D Pn21 , i 1 , X 2 D Pn2 2 , i 1 , X 3 D Pn23 , i 1 , X 4 D Pn2 4 , i 1 and X 5 D Pn25 , i 1 . Therefore Copyright © 2013 SciRes. OJDM A. VIJAYAN, K. L. GIPSON 67 D Pn2 , i D Pn21 , i 1 D Pn2 2 , i 1 D Pn23 , i 1 D Pn24 , i 1 D Pn25 , i 1 . Therefore d Pn2 , i d Pn21 , i 1 d Pn2 2 , i 1 d Pn23 , i 1 d Pn2 4 , i 1 d Pn25 , i 1 . Therefore, we have the theorem. b) d P , i x d P , i 1 x d P , i 1 x d P , i 1 x d P d P , i x x d P , i 1 x x d P , i 1 x x d P , i 1 x x d P , i 1 x x d P , i 1 x d P , i x x d P , i 1 x d P , i 1 x d P , i 1 x d P , i 1 x d P , i 1 x D P , x x D P , x D P , x D P , x D P , x D P , x d Pn2 , i x i d Pn21 , i 1 xi d Pn2 2 , i 1 xi d Pn23 , i 1 xi d Pn2 4 , i 1 xi d Pn25 , i 1 xi 2 n 2 n 2 n 1 i 2 n 1 i 1 2 n2 i 1 2 n4 i 1 2 n 5 i 1 i i 2 n 2 n2 i 1 2 n 1 i 2 n 2 n 1 2 n 3 D P , x x 3x 3x D P , x x 4x 6x 2x , D P , x x 5 x 10 x 8 x x . We obtain d P , i for 1 ≤ n ≤ 10 as shown in Table D P , x x, D P , x x 2x , 1. 2 2 2 3 3 2 2 4 4 3 2 5 5 4 2 2 3 2 2 n Table 1. d Pn2 , i , the number of dominating set of Pn2 with cardinality i. i 1 2 3 4 5 6 7 8 9 i1 2 n 3 i1 2 n4 with the initial values 2 1 2 n 3 , i 1 x d Pn25 , i 1 xi i i 1 2 n 5 2 n2 2 n 4 i i 1 2 n2 i 1 2 n4 2 n 3 i 10 2 n 5 In the following Theorem, we obtain some properties of d Pn2 , i Theorem 3.2. The following properties hold for the coefficients of D Pn2 , x ; 1) d P5n2 , n 1 for every n N. 2) 3) d P , n 1 for every n N d P , n 1 n for every n 2 2 n 2 n 2 for every n 3 d P , n 3 nC 2 for every n 4 d P , n 4 nC 2n 6 for every n 5 d P , n n 1 for every n N. 4) d Pn2 , n 2 5) 6) 7) n n 1 2 n 3 2 n 4 2 5 n 1 Proof: 1) Since D P52n , n 3,8, , 5k 2 , we have d P5n2 , n 1 . 2) Since D Pn2 , n n , we have the result n 1 1 2 2 1 3 3 3 1 4 2 6 4 1 5 1 8 10 5 1 6 0 9 18 15 6 1 7 0 8 27 33 21 7 1 8 0 6 34 60 54 28 8 1 9 0 3 37 93 114 82 36 9 1 10 0 1 34 126 206 196 118 45 10 Copyright © 2013 SciRes. D P , n 1 n x 2 n 3) Since x n , we have d Pn2 , n 1 n . 4) By induction on n. The result is true for n = 3. L.H.S. d P32 ,1 3 (from table) 3 2 R.H.S 3 2 1 Therefore, the result is true for n = 4. Now suppose that the result is true for all numbers less than “n” and we prove it for n. By Theorem 3.1, OJDM A. VIJAYAN, K. L. GIPSON 68 , n 3 d P 2 d Pn2 , n 2 d Pn21 , n 3 d Pn2 ,n 3 d Pn23 , n 3 d Pn24 2 n 5 ,n 3 5) By induction on n. The result is true for n = 4. L.H.S d P42 ,1 2 (from table) 4 3 2 2 6 Therefore the result is true for n = 1. Now suppose the result is for all natural numbers less than n. By Theorem 3.1, n 1 n 2 R.H.S d P42 ,1 n 2 1 2 n2 3n 2 2n 4 2 n 2 n n n 1 . 2 2 2 d Pn2 , n 3 d Pn21 , n 4 d Pn2 2 , n 4 d Pn23 , n 4 d Pn2 4 , n 4 d Pn25 , n 4 n 1 n 2 n 3 2 n 1 n 2 6 2 n 3 1 1 n 1 n 2 n 3 3 n 2 n 3 6 n 3 12 6 6 1 1 n 3 n 2 n 2 6 6 n 3 n 2 4 6 6 6 6 1 3 1 3 2 2 n 2n 3n 6 6 n 3n 2n 12 6 6 6) By induction on n. Let n = 5 L.H.S d P52 ,1 1 (from table) R.H.S n n 1 n 2 n 3 5 4 3 2 2n 6 2 5 6 5 4 1 1 2 3 4 1 2 3 4 Therefore the result is true for n =1. Now suppose that the result is true for all natural numbers less than or equal to n. d Pn2 , n 4 d Pn21 , n 5 d Pn2 2 , n 5 d Pn23 , n 5 d Pn2 4 , n 5 d Pn25 , n 5 n n 1 n 2 n 3 n 4 24 2 n 1 6 n 2 n 3 n 4 6 2 n 3 n 4 2 n 4 1 1 n 1 n 2 n 3 n 4 12 n 2 n 3 n 4 24 n 4 4 n 2 n 3 n 4 48n 192 48 24 24 1 n 2 n 3 n 4 n 1 4 12 n 4 n 3 2 48n 168 24 1 n 2 n 3 n 4 n 3 12 n 4 n 1 48n 168 24 1 n 4 n 2 n 3 n 3 12 n 1 48n 168 24 1 1 n 4 n 2 n2 9 12n 12 48n n 4 n3 9n 2n 2 18 36n 156 24 24 1 4 1 4 n 9n 2 2n3 18n 4n3 36n 8n 2 72 36n 156 n 6n3 11n 2 54n 144 24 24 7) From the table it is true. Theorem 3.3. 1) i n d Pi 2 , n 5 i 2 d Pi 2 , n 1 5n n 2) For every j , 5 Copyright © 2013 SciRes. 5n 5 d Pn21 , j 1 d Pn2 , j 1 d Pn2 , j d Pn25 , j 3) If Sn n n i 5 d Pn2 , j , then for every n ≥ 6, S n Sn 1 Sn 2 Sn 3 Sn 4 Sn 5 with initial values S1 OJDM A. VIJAYAN, K. L. GIPSON = 1, S2 = 3, S3 = 7, S4 = 13 and S5 = 25. Proof: 69 1) Proof by induction on n First suppose that n = 2 then, i d Pi 2 , 2 45 5 i 2 d Pi 2 ,1 5k 5k 5k 5k 5k 5k i k d Pi 2 , k i k d Pi 21 , k 1 i k d Pi 22 , k 1 i k d Pi 23 , k 1 i k d Pi 2 4 , k 1 i k d Pi25 , k 1 5 k 1 5 k 1 5 k 1 5 k 1 5 k 1 5 i k 1 d Pi 21 , k 2 5 i k 1 d Pi 2 2 , k 2 5 i k 1 d Pi 23 , k 2 5 i k 1 d Pi 2 4 , k 2 5 i k 1 d Pi 25 , k 2 5 k 5 5 i k 1 d Pi 2 , k 1 10 5 We have the result. 2) By Theorem 3.1, We have d P , j d P , j d P , j d P , j d P d P , j 1 d P , j 1 d P , j d P , j d Pn21 , j 1 d Pn2 , j 1 d Pn2 , j d Pn21 , j d Pn2 2 , j d Pn23 , j 2 n4 2 n 1 2 n 2 n 1 2 n 2 n 1 2 n 2 2 n 3 , j d Pn2 4 , j d Pn25 , j 2 n 5 Therefore we have the result 3) By theorem (3.1), we have Sn Sn n n i 5 n n i 5 d Pn2 , j d Pn21 , j 1 d Pn2 2 , j 1 d Pn23 , j 1 d Pn2 4 , j 1 d Pn25 , j 1 n 1 n i 1 5 d Pn21 , j 1 n 1 n i 1 5 d Pn2 2 , j 1 n 1 n i 1 5 d Pn2 3 , j 1 n 1 n i 1 5 d Pn2 4 , j 1 n 1 n i 1 5 d Pn25 , j 1 Sn Sn 1 Sn 2 Sn 3 Sn 4 Sn 5 . . 4. Conclusions In [2], the domination polynomial of path was studied and obtained the very important property, d Pn2 , i d Pn21 , i 1 d Pn2 2 , i 1 d Pn2 3 , i 1 . It is interesting that we have derived an analogues relation for the square of path of the form , i 1 d P , i 1 d Pn2 , i d Pn21 , i 1 d Pn2 2 , i 1 d Pn2 3 , i 1 d Pn2 4 2 n 5 One can characterise the roots of the polynomial D Pn2 , x and identify whether they are real or complex. Copyright © 2013 SciRes. Another interesting character r to be investigated is whether D Pn2 , x is log concave are not. REFERENCES [1] S. Alikhani and Y.-H. Peng, “Introduction to Domination Polynomial of a Graph,” .arXiv:0905.2251v1[math.co], 2009. [2] S. Alikhani and Y.-H. Peng, “Domination Sets and Domination Polynomials of Paths,” International Journal of Mathematics and Mathematical Sciences, Vol. 2009, 2009, Article ID: 542040. [3] G. Chartand and P. Zhang, “Introduction to Graph Theory,” McGraw-Hill, Boston, 2005. OJDM
© Copyright 2026 Paperzz