MODEL & MATHEMATICS Disarikan oleh: Prof Dr Ir Soemarno MS WHAT IS SYSTEM MODELLING ? Worthwhile Recognition Problems Amenable Compromise Complexity Definitions Simplification Bounding Objectives Hierarchy Identification Priorities Goals Generality Solution Family Generation Modelling Evaluation Implementation Selection Inter-relationship Feed-back Stopping rules Sensitivity & Assumptions PHASES OF SYSTEM MODELLING Recognition Definition and bounding of the problems Identification of goals and objectives Generation of solution MODELLING Evaluation of potential courses of action Implementation of results MODEL & MATEMATIK: Term Variabel Parameter Tipe Konstante Likelihood Dependent Populasi Probability Analitik Independent Maximum Sampel Regressor Simulasi MODEL & MATEMATIK: Definition Preliminary Formal Expression Words Mathematical Goodall Mapping Rules Representational Maynard-Smith Predicted values Homomorph Model Physical Mathematical Comparison Symbolic Simplified Data values Simulation MODEL & MATEMATIK: Relatives Advantages Disadvantages Distortion Precise Abstract Transfer Opaqueness Complexity Replacement Communication MODEL & MATEMATIK: Families Types Dynamics Compartment Stochastic Multivariate Network Basis Choices BEBERAPA PENGERTIAN MODEL DETERMINISTIK: Nilai-nilai yang diramal (diestimasi, diduga) dapat dihitung secara eksak. MODEL STOKASTIK: Model-model yang diramal (diestimasi, diduga) tergantung pada distribusi peluang POPULASI: Keseluruhan individu-individu (atau area, unit, lokasi dll.) yang diteliti untuk mendapatkan kesimpulan. SAMPEL: sejumlah tertentu individu yang diambil dari POPULASI dan dianggap nilai-nilai yang dihitung dari sampel dapat mewakili populasi secara keseluruhan PARAMETER: Nilai-nilai karakteristik dari populasi KONSTANTE, KOEFISIEAN: nilai-nilai karakteristik yang dihitung dari SAMPEL VARIABEL DEPENDENT: Variabel yang diharapkan berubah nilainya disebabkan oleh adanya perubahan nilai dari variabel lain VARIABEL INDEPENDENT: variabel yang dapat menyebabkan terjadinya perubahan VARIABEL DEPENDENT. BEBERAPA PENGERTIAN MODEL FITTING: Proses pemilihan parameter (konstante dan/atau koefisien yang dapat menghasilkan nilai-nilai ramalan paling mendekati nilai-nilai sesungguhnya ANALYTICAL MODEL: Model yang formula-formulanya secara eksplisit diturunkan untuk mendapatkan nilai-nilai ramalan, contohnya: MODEL REGRESI MODEL MULTIVARIATE EXPERIMENTAL DESIGN STANDARD DISTRIBUTION, etc SIMULATION MODEL: Model yang formula-formulanya diturunkan dengan serangkaian operasi arithmatik, misal: Solusi persamaan diferensial Aplikasi matrix Penggunaan bilangan acak, dll. DYNAMIC MODEL MODELLING SIMULATION Dynamics Equations Computer FORMAL Language ANALYSIS Special DYNAMO CSMP CSSL General BASIC DYNAMIC MODEL DIAGRAMS SYMBOLS RELATIONAL LEVELS AUXILIARY VARIABLES RATE EQUATIONS PARAMETER SINK MATERIAL FLOW INFORMATION FLOW DYNAMIC MODEL: ORIGINS Abstraction Computers Equations Steps Hypothesis Discriminant Function Simulation Other functions Exponentials Logistic Undestanding MATRIX MODEL MATHEMATICS Operations Additions Substraction Multiplication Inversion Matrices Eigen value Elements Dominant Types Eigen vector Square Rectangular Diagonal Identity Vectors Row Column Scalars MATRIX MODEL DEVELOPMENT Interactions Groups Materials cycles Size Development stages Stochastic Markov Models STOCHASTIC MODEL STOCHASTIC Probabilities History Statistical method Other Models Dynamics Stability STOCHASTIC MODEL Spatial patern Distribution Pisson Example Poisson Negative Binomial Binomial Negative Binomial Others Test Fitting STOCHASTIC MODEL ADDITIVE MODELS Basic Model Example Error Estimates Analysis Parameter Variance Orthogonal Block Effects Experimental Treatments Significance STOCHASTIC MODEL REGRESSION Model Example Error Linear/ Nonlinear functions Decomposition Equation Theoritical base Oxygen uptake Reactions Experimental Assumptions Empirical base STOCHASTIC MODEL MARKOV Analysis Example Assumptions Analysis Transition probabilities Raised mire Disadvantage Advantages MULTIVARIATE MODELS METHODS VARIATE Variable Classification Dependent Independent Descriptive Principal Component Analysis Predictive Discriminant Analysis Cluster Analysis Reciprocal averaging Canonical Analysis MULTIVARIATE MODEL PRINCIPLE COMPONENT ANALYSIS Requirement Example Environment Organism Regions Correlation Eigenvalues Objectives Eigenvectors MULTIVARIATE MODEL CLUSTER ANALYSIS Example Spanning tree Multivariate space Demography Rainfall regimes Minimum Similarity Single linkage Distance Settlement patern MULTIVARIATE MODEL CANONICAL CORRELATION Example Correlation Partitioned Watershed Urban area Eigenvalues Irrigation regions Eigenvectors MULTIVARIATE MODEL Discriminant function Example Discriminant Calculation Villages Vehicles Test Structures OPTIMIZATION MODEL OPTIMIZATION Dynamic Meanings Indirect Simulation Minimization Experimentation NonLinear Linear Objective function Constraints Solution Examples Maximization Optimum Transportation Routes Optimum irrigation scheme Optimum Regional Spacing MODELLING PROCESS System analysis Introduction Processes Model Bounding Systems Definition Word Models Impacts Factorial Confounding Alternatives Separate Combinations Hypotheses Data Modelling Analysis Choices Validation Plotting Outliers Test Estimates Conclusion Integration Space Time Niche Elements Communication MODELLING PROCESSES HYPOTHESES Decision Table Relevance Variable Processes Linkages Impacts Relationships Linear Non-Linear Species Interactive Sub-systems HYPOTHESES Hypotheses of Relevance: Mengidentifikasi dan mendefinisikan variabel dan subsistem yang relevan dengan permasalahan yang diteliti Hypotheses of Processes: Menghubungkan subsistem (atau variabel) di dalam permasalahan yang diteliti dan mendefinisikan dampak (pengaruh) terhadap sistem yang diteliti Hypotheses of relationships: Merumuskan hubungan-hubungan antar variabel dengan menggunakan formula-formula matematik (fungsi linear, non-linear, interaksi, dll) MODELLING PROCESSES VALIDATION Verification Critical Test Subjectives Sensitivity Analysis Uncertainty Analysis Resources Objectivities Experiments Reasonableness Interactions ROLE OF THE COMPUTER Roles Introduction Reasons Speed Data Algoritm Comparison Speed Implication Techniques Errors Plotting Waste Program High level Language Information FORTRAN BASIC ALGOL Machine code Special Development Conclusions Repetition Checking 9/10 Modelling Data Algoritms Manual Calculator Computer Programming DYNAMO. Etc. ROLE OF THE COMPUTER DATA Machine readable Cautions Availability Sampling Format Punched card Exchange Paper tape Format Reanalysis Magnetic Tape Data banks Disc MODEL & MATHEMATICS
© Copyright 2026 Paperzz