Electromagnetic Theory Engr.Mian Shahzad Iqbal Department of Telecom Engineering University of Engineering & Technology Taxila Text Book Two textbooks will be used extensively throughout this course 1. Field and Wave Electromagnetic by David K.Chang 2. “Engineering Electromagnetic by William H.Hayt Yahoo Group Group Home Page http://groups.yahoo.com/group/mianshahzadiqb al Group Email [email protected] Field Vector Cartesian Coordinate System Coordinates Limits z A R R x, y, z ez x y z xe x x Orthonormal Unit Vectors ze z ey ex y ye y ex , e y , ez ex e y ez | e x || e y || e z | 1 Arbitrary Vector Field A R Ax R A y R Az R = A x ( x, y, z) e x A y ( x, y, z) e y A z ( x, y, z) e z Position Vector Cylindrical Coordinate System z R R r (R) R (R) R z (R) R = Rr (R) er ( ) R (R) e ( ) Rz (R) e z r er ( ) z e z ze z r er x Coordinates Orthonormal Unit Vectors r,, z; 0 r , 0 2 , z er ( ), e ( ), e z er ( ) e ( ) e z | er ( ) || e ( ) || e z | 1 y Field Vector Spherical Coordinate System Coordinates Limits A R z R,, R 0R 0 0 2 ReR , eR , x Orthonormal Unit Vectors e , y e e R , , e , , e e R , e , e : Perpendicular / Senkrecht | e R , || e , || e | 1 Arbitrary Vector Field A R, t A R R A R A R = A R ( R, , ) eR , A ( R, , ) e , A ( R, , ) e Cartesian Coordinate System: Coordinate Surfaces, Unit Vectors, Surface Elements and Volume Element z const. dS xy ez P ( x, y , z ) ex dS xz ey x const. y const. dS yz Cylindrical Coordinate System: Coordinate Surfaces, Unit Vectors, Surface Elements and Volume Element dS xy z const. dS rz e ( ) dS z ez P(r , , z ) er r const. dr const. r d Spherical Coordinate System: Coordinate Surfaces, Unit Vectors, Surface Elements and Volume Element R sin d dS eR , P ( R, , ) e ( ) e , const. R const. dSr R d dS r R sin Metric Coefficients and Vector Differential Line Elements Cartesian Coordinate System hx 1, hy 1, hz 1 dR x s dR Cylindrical Coordinate System hr 1, h r, hz 1 dR r s dR e x hx dx e r hr dr e x dx e r dr dR y s dR dR s dR e y h y dy e h d e y dy e r d dR z n dR e z hz dz e z dz dR z s dR Spherical Coordinate System hR 1, h R, h R sin dR R s dR e R hR dR e R dR dR s dR e h d e R d dR s dR e z hz dz e h d e z dz e R sin d Metric Coefficients and Differential Volume and Surface Elements Cartesian Coordinate System Cylindrical Coordinate System Spherical Coordinate System hx 1, hy 1, hz 1 hr 1, h r, hz 1 dV hx dx hy dy hz dz dV hr dr h d hz dz dV hR dR h d h d hx hy hz dx dy dz hr h hz dr d dy hR h h dR d d dz dx dz r dr d dz R 2 sin dR d d dS yz n dS dS z n dS (e y ×e z ) hy hz dy dz (e ×e z ) h hz d dz e x dy dz er r dy dz dS xz n dS (e z ×e x ) hx hz dx dz e y dx dz dS xy n dS dS rz n dS (e z ×er ) hr hz dr dz e dr dz dS r n dS (e x ×e y ) hx hy dx dy (er ×e ) hr h dr d e z dx dy e z r dr d hR 1, h R, h R sin dS n dS (e ×e ) h h d d e R R 2 sin d d dS r n dS (e ×e R ) hR h dR d e R sin dR d dS R n dS (e R ×e ) hR h dR d e R dR d z Coordinates of Different Coordinate Systems Transformation Table R y x Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates R sin cos x r cos y r sin z z x2 y2 r R sin y arctan x z z R cos x2 y 2 z 2 x2 y2 arctan z y arctan x r2 z2 r arctan z R sin sin R cos R Examples 1. Formulate x as a function of the cylinder and spherical coordinates. x r cos R sin cos 2. Formulate r as a function of the Cartesian and spherical coordinates. r x 2 y 2 R sin 3. Formulate . x2 y2 as a function of the cylinder coordinates. x 2 y 2 (r cos ) 2 (r sin ) 2 r cos 2 sin 2 r 1 Scalar Vector Components in Different Coordinate Systems Transformation Table Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates A Ax e x Ay e y Az e z A Ar er A e Az e z A = AR e R A e A e Ax Ar cos A sin AR sin cos A cos cos A sin Ay Ar sin A cos AR sin sin A cos sin A cos Az Az Ax cos Ay sin Ar AR sin A cos Ax sin Ay cos A A Az Az AR cos A sin Ar sin Az cos AR Ar cos Az sin A A A Ax sin cos Ay sin sin Az cos Ax cos cos Ay cos sin Az sin Ax sin Ay cos AR cos A sin Electromagnetic In EMT, we have to deal with quantities that depend on both time and position Gradient Gradient of a scalar field is a vector field which points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is the greatest rate of change. Gradient In the above two images, the scalar field is in black and white, black representing higher values, and its corresponding gradient is represented by blue arrows. Divergence Divergence is an operator that measures the magnitude of a vector field's source or sink at a given point The divergence of a vector field is a (signed) scalar For example, for a vector field that denotes the velocity of air expanding as it is heated, the divergence of the velocity field would have a positive value because the air expands. If the air cools and contracts, the divergence is negative. The divergence could be thought of as a measure of the change in density. Curl Curl is a vector operator that shows a vector field's "rotation"; The direction of the axis of rotation and the magnitude of the rotation. It can also be described as the circulation density. "Rotation" and "circulation" are used here for properties of a vector function of position, regardless of their possible change in time. A vector field which has zero curl everywhere is called irrotational.
© Copyright 2025 Paperzz