Supplementary Material for AIChE Journal Scheduling of Crude Oil Operations under Demand Uncertainty: A Robust Optimization Framework Coupled with Global Optimization Jie Li, Ruth Misener, and Christodoulos A. Floudas* Department of Chemical and Biological Engineering Princeton University Princeton, NJ 08544-5263 Appendix S1 Robust Counterparts for Eqs. 24a-b with Known Probability Distributions Appendix S2 Robust Optimization Model from the Robust Framework using the Approach of Cao et al.40 and Wang and Rong41 Appendix S3 Table S1 Vessels, Tanks, CDUs, and Economic Data for Example 2 Table S2 Specific gravities, sulfur contents, nitrogen contents, carbon residues, pour point, freeze point, flash point for crudes and acceptable ranges for feeds to CDUs for Example 2 Table S3 Smoke points, Ni contents and Reid vapor pressures for crudes and acceptable ranges for feeds to CDUs for Example 2 Figure S1 Inventory profiles of T1-T5 from the robust schedule in Figure 11 Figure S2 Feed rates to CDU101 and CDU102 for Example 1 from the robust schedule in Figure 11 Figure S3 Inventory profiles of T1-T5 for Example 1 from the robust schedule in Figure 12 Figure S4 Feed rates to CDU101 and CDU102 for Example 1 from the robust schedule in Figure 12 Figure S5 Robust schedule for Example 2 from model ROM with demand uncertainty following bounded uncertainty Figure S6 Inventory profiles of T1-T8 for Example 2 from the robust schedule in Figure S5 Figure S7 Feed rates to CDU101, CDU102, and CDU103 for Example 2 from the robust schedule in Figure S5 Figure S8 Inventory profiles of T1-T8 for Example 2 from the robust schedule in Figure 14 Figure S9 Feed rates to CDU101, CDU102 and CDU103 for Example 2 from the robust schedule in Figure 14 * To whom correspondence should be addressed. E-mail: [email protected]. Tel. +1-609-258-4595. Fax: +1-609-258-0211 1 Appendix S1 Robust Counterparts for Eqs. 24a-b with Known Probability Distributions Difference of Normal Distribution If the uncertain demand parameters can be represented as the difference of two independent random variables, each following standardized normal distribution, then the deterministic robust counterpart for eqs. 24a-b is given by, V U (u, n) D(u ) [ u2 u2 Fn1 (1 ) ( u 1u u 2u )] D(u) max 1, D(u) n u V U (S1a) (u, n) D(u ) [ u2 u2 Fn1 (1 ) ( u 1u u 2u )] D(u) max 1, D(u) n u (S1b) where Fn1 (1 ) being the inverse standard normal cumulative distribution function. General Discrete Distribution If each uncertain demand parameter only takes on discrete values following a general discrete distribution, the deterministic robust counterpart for eqs. 24a-b is given by, V U (u, n) D(u ) D(u) max 1, D(u) u (S2a) (u, n) D(u ) D(u ) max 1, D(u) u (S2b) n V U n where = 1 F() and F is the distribution function of a general discrete random variable. Binomial Distribution When the uncertain demand parameters follow a binomial probability distribution, then the deterministic robust counterpart for eqs. 24a-b is given by, V U (u, n) D(u ) Fn1 (1 ) D(u ) max 1, D(u) u (S3a) (u, n) D(u ) Fn1 (1 ) D(u) max 1, D(u) u (S3b) n V U n where Fn1 (1 ) being the inverse distribution function of a discrete variable with a binomial distribution. Poisson Distribution When the uncertain demand parameters follow a poisson probability distribution, then the deterministic robust counterpart for eqs. 24a-b is given by, V U (u, n) D(u ) Fn1 (1 ) D(u ) max 1, D(u) n 2 u (S4a) V U (u, n) D(u ) Fn1 (1 ) D(u) max 1, D(u) u (S4b) n where Fn1 (1 ) being the inverse distribution function of a discrete variable with a poisson distribution. 3 Appendix S2 Robust Optimization Model from the Robust Framework using the Approach of Cao et al.40 and Wang and Rong41 Cao et al.40 and Wang and Rong41 used eq. S5 (or eq. 23) as follows to convert eq. 21 into inequality, V U u (u, n) D(u ) (S5) n If the demand parameter D(u) is uncertain and its true realization is denoted as D(u) , eq. S5 is represented as follows, V U u (u, n) D(u ) (S6) n Bounded Uncertainty If the demand parameter varies in a bounded interval [ D L (u) , DU (u ) ], the deterministic robust counterpart of eq. S6 is derived as follows, V U (u, n) DU (u ) max[1, D(u)] u (S7) n Bounded and Symmetric Uncertainty If the demand parameter is uncertain and distributed around the nominal value randomly and symmetrically, D(u) [1 (u)] D(u) u where, (u) is random variable distributed symmetrically in the interval [−1, 1]. The deterministic robust counterpart for eq. S6 is derived as follows, V U (u, n) D(u ) D(u) u0u D(u) zz 0u ] max[1, D(u) u (S8) n where, u0u ≤ 1+ z0u ≤ u0u u zz0u ≤ z0u ≤ zz0u u u0u ≥ 0, zz0u ≥ 0 u κ = exp (− 2/2) ≥0 Known Probability Distribution If the demand parameter is uncertain and follows some known probability distribution, the generic deterministic robust counterpart of the probabilistic constraint can be formulated as follows for random variables following any distribution. V U (u, n) D(u ) f [ , D(u )] max[1, D(u )] n 4 u (S9) Uniform Continuous Distribution If the demand parameters follow a uniform continuous distribution, then f [ , D(u )] (1 2 ) D(u ) . Thus, the deterministic robust counterpart is given by, V U (u, n) D(u ) (1 2 ) D(u) max 1, D(u) u (S10) n Normal Distribution If the uncertain demand parameters follow normal distribution, then f [ , D(u )] Fn1 (1 ) D(u ) , where Fn1 (1 ) being the inverse standard normal cumulative distribution function. The deterministic robust counterpart is given by, V U (u, n) D(u ) Fn1 (1 ) D(u ) max 1, D(u) u (S11) n Difference of Normal Distribution If the uncertain demand parameters can be represented as the difference of two independent normal random variables, each with a given mean , and a given standard deviation . u u1u u 2u The deterministic robust counterpart for eq. S6 is given by, V U (u, n) D(u ) [ u2 u2 Fn1 (1 ) ( u 1u u 2u )] D(u) max 1, D(u) n u (S12) where Fn1 (1 ) being the inverse standard normal cumulative distribution function. General Discrete Distribution If each uncertain demand parameter only takes on discrete values following a general discrete distribution, the deterministic robust counterpart for eq. S6 is given by, V U (u, n) D(u ) D(u) max 1, D(u) u (S13) n where = 1 F() and F is the distribution function of a general discrete random variable. Binomial Distribution When the uncertain demand parameters follow a binomial probability distribution, then the deterministic robust counterpart for eq. S6 is given by, V U (u, n) D(u ) D(u) max 1, D(u) u (S14) n where Fn1 (1 ) being the inverse distribution function of a discrete variable with a binomial distribution. 5 Poisson Distribution When the uncertain demand parameters follow a poisson probability distribution, then the deterministic robust counterpart for eq. S6 is given by, V U (u, n) D(u ) D(u) max 1, D(u) u (S15) n where Fn1 (1 ) being the inverse distribution function of a discrete variable with a poisson distribution. Unknown Probability Distribution When the demands are uncertain and follow an unknown probability distribution, then the robust counterpart is given by, V U (u, n) n 1 D(u ) max[1, D(u )] u (S16) The deterministic robust counterpart optimization model is denoted as ROM-CWR presented below. (ROM-CWR) s.t. Min PROFIT eqs. A1-A43 in Appendix A eqs. S7, S8, S9, or S16 for corresponding distribution eqs. A45-A54 and eqs. A55-A61 in Appendix A The resulting mathematical ROM-CWR is non-convex MINLP and the sources of nonconvexities are the distinct bilinear terms (i.e., eqs. A15-A16): VI ,U ,C (i, u, c, n) EI ,C (i, c, n 1) VI ,U (i, u, n) (i, u) SI,U, (i, c) SI,C, (i, n) SF,I, n (A15) (i, c) SI,C, n VI ,C (i, c, n) EI ,C (i, c, n) VI (i, n) (A16) The proposed branch and bound algorithm from Li et al.3 can be directly used to solve model ROM-CWR. 6 Appendix S3 It should be noted that in the robust schedule, the unloading schedule {i.e., parcel-to-tank allocation [X(p,i,n)], unloading amount [VP,I(p,i,n)], and start and end unloading times end [ TPstart , I ( p, i, n) and TP , I ( p, i, n) ]}, and feed sequence {i.e, tank-to-CDU allocation [Y(i,u,n)], end and the start and end times [ TIstart tank feeding to each CDU} ,U (i, u, n) and TI ,U (i, u, n) ] of each is feasible for the demands of DL(u) and DU(u). Therefore, we need to prove that the unloading schedule and feed sequence from the robust schedule is also feasible for any demand realization within [DL(u), DU(u)]. We define RIa,U (i, u, n) to denote the feed rate from tank i to CDU u during event point n for the demand of DL(u), RIb,U (i, u, n) to denote the feed rate from tank i to CDU u during event point n for the demand of DU(u), and RI ,U (i, u , n) as the feed rate from tank i to CDU u during event point n for any demand realization within [DL(u), DU(u)]. For any demand of D(u) within [DL(u), DU(u)], start D(u ) RI ,U (i, u , n) TIend ,U (i , u , n ) TI ,U (i , u , n ) n u (S17) i Theorem 1: For any D(u) [DL(u), DU(u)], there is at least one feasible RI,U(i,u,n) within [ RIa,U (i, u, n) , RIb,U i, u, n ] to satisfy eq. S17. Proof. Assume that there is no feasible RI,U(i,u,n) [ RIa,U (i, u, n) , RIb,U (i, u, n) ] to satisfy eq. S17. In other words, for any RI,U(i,u,n) [ RIa,U (i, u, n) , RIb,U (i, u, n) ], R I ,U n or i R I ,U n i start (i, u, n) TIend ,U (i , u , n) TI ,U (i , u , n ) D (u ) u (S18a) start (i, u, n) TIend ,U (i , u , n) TI ,U (i , u , n ) D (u ) u (S18b) We consider eq. S18a. If let RI ,U (i, u, n) RIa,U (i, u, n) , then R I ,U n i start (i, u, n) TIend ,U (i , u , n) TI ,U (i , u , n ) start RIa,U (i, u, n) TIend ,U (i, u , n) TI ,U (i, u , n) n i D L (u) D(u) , which contradicts DL(u) < D(u). Similarly, if RI ,U (i, u, n) RIb,U (i, u, n) , then Du(u) < D(u) from eq. S18b, which contracts DU(u) > D(u). ■ Theorem 2: For the robust schedule, if we only adjust the feed rate from any tank i to CDU u within [ RIa,U (i, u, n) , RIb,U (i, u, n) ] (i.e., fix the unloading schedule and feed sequence) to achieve any demand realization within [DL(u), DU(u)], the composition of crude c in each tank 7 max i at each event point n is also within [ EImin ,C (i, c) , EI ,C (i, c) ]. Proof. Let EIa,C (i, c, n) and EIb,C (i, c, n) denote the composition of crude c in tank i at the end of event point n for the demands of DL(u) and DU(u), respectively. EIr,C (i, c, n) denotes the composition of crude c in tank i at the end of event point n from the robust schedule. From a b r max model ROM, EImin ,C (i, c) EI ,C (i, c, n), EI ,C (i, c, n), EI ,C (i, c, n) EI ,C (i, c) . At event point ‘n1’, a tank i may receive crudes from vessels or feed CDUs. If it feeds CDUs at this event point, then its composition at the end of event point ‘n1’ is the same as its initial composition, that . EI ,C (i, c,'n1') EIa,C (i, c,' n1') EIb,C (i, c,' n1') EIinit ,C (i, c) is, init max Since EImin ,C (i, c) EI ,C (i, c) EI ,C (i, c) , a b max EImin ,C (i, c) EI ,C (i, c,'n1') EI ,C (i, c,'n1') EI ,C (i, c,'n1') EI ,C (i, c) (i, c) SI,C (S19) (i, c) SI,C (S20) If it receives crudes from vessels, then EI,C(i,c,n1) = VIinit (i ) EIinit ,C (i, c ) VIinit (i ) EIinit ,C (i, c ) p:( p ,i )S P ,I , p:( p ,c )S P ,C p:( p ,i )S P ,I , p:( p ,c )S P ,C p:( p ,i )S P ,I , p:( p ,c )S P ,C VIinit (i ) VP , I ( p, i, ' n1') VP , I ( p, i, ' n1') VP , I ( p, i, 'n1') 1 EIinit ,C (i, c) p:( p ,i )S P ,I , p:( p ,c )S P ,C VP , I ( p, i, 'n1') From eq. S20, EI,C(i,c,‘n1’) depends on VP,I(p,i,‘n1’). Note that the unloading schedule is the same for any demand within [DL(u), DU(u)], that is, VP,I(p,i,‘n1’) is the same for any demand within [DL(u), DU(u)]. It is concluded that: a b max EImin ,C (i, c) EI ,C (i, c,'n1') EI ,C (i, c,'n1') EI ,C (i, c,'n1') EI ,C (i, c) (i, c) SI,C (S21) At event point ‘n2’, the tank i may feed CDUs, or receive crudes from vessels. Combining with those at event point ‘n1’, four combinations of activities for this tank i at event points ‘n1’ and ‘n2’ are obtained: (i) Receive crudes from vessels at ‘n1’, and feed CDUs at ‘n2’; (ii) Feed CDUs at ‘n1’, and feed CDUs at ‘n2’; (iii)Receive crudes from vessels at ‘n1’, and also receive crudes at ‘n2’; (iv) Feed CDUs at ‘n1’, and receive crudes at ‘n2’. For (i) and (ii), it is not difficult to conclude that a EIb,C (i, c,'n2') EImax EImin ,C (i, c) . ,C (i, c) EI ,C (i, c,'n2') EI ,C (i, c,'n2') For (iii), EI ,C (i, c,'n2') EIa,C (i, c,'n2') EIb,C (i, c,'n2') because the unloading schedule is the same for any demand 8 within [DL(u), DU(u)]. Thus, a EIb,C (i, c,'n2') EImax EImin ,C (i, c) . ,C (i, c) EI ,C (i, c,'n2') EI ,C (i, c,'n2') For (iv), EI,C(i,c,n2) = init init end start VP , I ( p, i, 'n2 ') VI (i ) RI ,U (i, u, 'n1') [TI ,U (i, u , 'n1') TI ,U (i, u , 'n1')] EI ,C (i, c) u:( i ,u )S I ,U p:( p ,i )S P ,I , p:( p ,c )S P ,C start VIinit (i ) RI ,U (i, u, 'n1') [TIend VP , I ( p, i, 'n2 ') ,U (i, u , 'n1') TI ,U (i , u , 'n1')] u:( i ,u )S I ,U EIinit ,C (i, c ) VIinit (i ) p:( p ,i )S P ,I , p:( p , c )S P ,C u:( i ,u )S I ,U init VP , I ( p, i, 'n2 ') 1 EI ,C (i, c) p:( p ,i )S P ,I start RI ,U (i, u, 'n1') [TIend ( i , u , 'n1') T ,U I ,U (i , u , 'n1')] p:( p ,i )S P ,I , p:( p ,c )S P ,C (i, c) SI,C VP , I ( p, i, 'n2 ') (S22) From eq. S22, when RI,U(i,u,n1) increases, EI,C(i,c,n2) also increases. When RI ,U (i, u,'n1') RIa,U (i, u,'n1') RI ,U (i, u, 'n1') = , RIb,U (i, u,'n1') RIa,U (i, u,'n1') RI ,U (i, u,'n1') EI ,C (i, c,'n2') EIa,C (i, c,'n2') then , then EI ,C (i, c,'n2') EIb,C (i, c,'n2') RIb,U (i, u,'n1') , . . If Since then a b max EImin ,C (i, c) EI ,C (i, c,'n2 ') EI ,C (i, c,'n2') EI ,C (i, c,'n2') EI ,C (i, c) . Assume that at event point a b max n, EImin ,C (i, c) EI ,C (i, c, n) EI ,C (i, c, n) EI ,C (i, c, n) EI ,C (i, c) . Then, at event point (n+1), a tank i may receive crudes or feed CDUs. If it feeds CDUs at event point (n+1), then its composition at the end of this event point (n+1) is equivalent to that of event point n. Thus, a b max EImin ,C (i, c) EI ,C (i, c, n 1) EI ,C i, c, n 1 EI ,C (i, c, n 1) EI ,C i, c is also true. If it receives crudes from vessels during event point (n+1), then EI,C(i,c,n+1) = start RI ,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] init u:(i ,u )S I ,U EI ,C (i, c, n) VP , I ( p, i, n 1) VI (i ) VP , I ( p, i, n) n n 1 p:( p ,i )S P ,I p:( p ,i )S P ,I p:( p ,c )S P ,C p:( p ,c )S P ,C start RI ,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] u:( i ,u )S I ,U VIinit (i ) VP , I ( p, i, n 1) VP , I ( p, i, n ) n n 1 p:( p ,i )S P ,I p :( p , i ) S P ,I p:( p ,c )S P ,C p:( p ,c )S P ,C start RI ,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] init u:(i ,u )S I ,U b EI ,C (i, c, n) VP , I ( p, i, n 1) VI (i ) VP , I ( p, i, n) n n 1 p:( p ,i )S P ,I p:( p ,i )S P ,I p:( p ,c )S P ,C π1 p:( p ,c )S P ,C start RI ,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] u:( i ,u )S I ,U VIinit (i ) VP , I ( p, i, n 1) VP , I ( p, i, n) n n 1 p:( p ,i )S P ,I p :( p , i ) S P ,I p:( p ,c )S P ,C p :( p , c ) S P ,C 9 start RIb,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] init u:(i ,u )S I ,U b EI ,C (i, c, n) VP , I ( p, i, n 1) VI (i ) VP , I ( p, i, n) n n 1 p:( p ,i )S P ,I p :( p , i ) S P ,I p:( p ,c )S P ,C π2 p :( p , c ) S P ,C b end start RI ,U (i, u , n) [TI ,U (i, u , n) TI ,U (i, u , n)] u:(i ,u )S I ,U VIinit (i ) VP , I ( p, i, n 1) VP , I ( p, i, n) n n 1 p:( p ,i )S P ,I p:( p ,i )S P ,I p:( p ,c )S P ,C p :( p , c ) S P , C EIb,C (i, c, n 1) EImax ,C (i, c) Note: 1 is true because EI ,C i, c, n 1 EIb,C (i, c, n 1) . start RIb,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] u:( i ,u )S I ,U Let VIb (i, n) VIinit (i ) VP , I ( p, i, n) n n 1 p:( p ,i )S P ,I p:( p ,c )S P ,C start RI ,U (i, u , n) [TIend ,U (i , u , n ) TI ,U (i , u , n )] u:( i ,u )S I ,U VI (i, n) VIinit (i ) VP , I ( p, i, n) n n 1 p :( p , i ) S P ,I p:( p ,c )S P ,C VP (i, n 1) p:( p ,i )S P ,I p:( p ,c )S P ,C VP , I ( p, i, n 1) Since RI ,U i, u, n RIb,U (i, u, n) , VI i, n VIb (i, n) . 2 is equivalent to the following: VI (i, n) EIb,C (i, c, n) VP (i, n 1) VI (i, n) VP (i, n 1) VIb (i, n) EIb,C (i, c, n) VP (i, n 1) VIb (i, n) VP (i, n 1) [VI (i, n) VIb (i, n)] EIb,C (i, c, n) VP (i, n 1) [VI (i, n) VIb (i, n)] VP (i, n 1) EIb,C (i, c, n) 1 . Similarly, EI ,C (i, c, n 1) EIa,C (i, c, n 1) EImin ,C (i, c) . a b max Therefore, EImin ,C (i, c) EI ,C (i, c, n) EI ,C (i, c, n) EI ,C (i, c, n) EI ,C (i, c) (i, c) SI,C (S23) ■ Theorem 3: Using the unloading schedule and feed sequence from the robust schedule, for any demand realization within [DL(u), DU(u)], there exists a feasible feed rate RI,U(i,u,n) [ RIa,U (i, u, n) RI ,U (i, u, n) RIb,U (i, u, n) ] to ensure that the crude fractions and quality specifications fed to CDU u at each event point n are also within [ EUmin (u, c) , EUmax (u , c) ] and [ eUmin (u , k ) , eUmax (u , k ) ], respectively. Proof. Let EUa (u , c, n) and eUa (u , k , n) denote the composition of crude c fed to CDU u at 10 event point n and the crude quality specification k fed to CDU u at the end of event point n respectively for the demand of DL(u). EUb (u , c, n) and eUb (u , k , n) are defined as the composition of crude c fed to CDU u at event point n and the crude quality specification k fed to CDU u at the end of event point n respectively for the demand of DU(u). From Theorem 2, when RI,U(i,u,n) [ RIa,U (i, u, n) , RIb,U (i, u, n) ], then a b max EImin ,C (i, c) EI ,C (i, c, n) EI ,C (i, c, n) EI ,C (i, c, n) EI ,C (i, c) From model (i, c) SI,C EUmin u, c EUa u, c, n , EUb u, c, n EUmax u, c ROM, , and eUmin u, k eUa u, k , n , eUb u, k , n eUmax u, k . At any event point, a tank i feeds a CDU u alone or together with another tank j. (i) If a tank i feeds CDU u alone at any event point (n+1), then EUmin u, c EIa,C i, c, n , EIb,C (i, c, n) EUmax u, c . For any EI,C(i,c,n), we have: EUmin (u, c) EIa,C (i, c, n) EI ,C (i, c, n) EIb,C (i, c, n) EUmax (u, c) (i, c) SI,C (S24) For crude quality specifications which are calculated on volume basis, EI ,C (i, c, n) EIa,C (i, c, n) c:( i ,c )S I ,C EI ,C (i, c, n) eC (c, k ) EIa,C (i, c, n) eC (c, k ) eUa (u, k , n) eUmin (u, k ) EIb,C (i, c, n) eC (c, k ) eUb (u, k , n) eUmax (u, k ) c:( i ,c )S I ,C EI ,C (i, c, n) EIb,C (i, c, n) c:( i ,c )S I ,C EI ,C (i, c, n) eC (c, k ) c:( i ,c )S I ,C For crude quality specifications which are calculated on weight basis, EI ,C (i, c, n) EIa,C (i, c, n) c:( i ,c )S I ,C EI ,C (i, c, n) c eC (c, k ) c:( i ,c )S I ,C EIa,C (i, c, n) c eC (c, k ) eUa (u, k , n) eUmin (u, k ) EI ,C (i, c, n) EIb,C (i, c, n) c:( i ,c )S I ,C (ii) EI ,C (i, c, n) c eC (c, k ) c:( i ,c )S I ,C EIb,C (i, c, n) c eC (c, k ) eUb (u, k , n) eUmax (u, k ) If tank i feeds CDU u together with another tank j at event point n, then the start and end times of tank i feeding CDU u at event point n must be the same as those of tank j feeding this CDU u at event point n. In other words, start end end TIstart ,U (i, u, n) TI ,U ( j , u, n) , TI ,U (i, u, n) TI ,U ( j, u, n) (i, u) SI,U, (j, u) SI,U, n (S25) The composition of crude c fed to CDU u at event point n [denoted as EU(u,c,n)] are given by, 11 EU (u, c, n) i:( i ,u )S I ,U VI ,U ,C (i, u, c, n) VU (u, n) start RI ,U (i, u, n) [TIend ,U (i, u , n) TI ,U (i , u , n)] EI ,C (i , c, n 1) R ( j , u, n) [T end ( j , u, n) T start ( j , u, n)] E ( j , c, n 1) J ,U J ,U J ,C J ,U end start end RI ,U (i, u, n) [TI ,U (i, u, n) TI ,U (i, u, n)] RJ ,U ( j, u, n) [TJ ,U ( j, u, n) TJstart ,U ( j , u , n)] RI ,U (i, u, n) EI ,C (i, c, n 1) RJ ,U ( j, u, n) EJ ,C ( j, c, n 1) (u, c) SU,C RI ,U (i, u, n) RJ ,U ( j, u, n) We define RI u, n L D (u) and RI b I ,U u, n EU (u, c, n) RI ,U (i, u, n) RJ ,U ( j , u, n) RIb,U (i, u, n) RJb,U ( j, u, n) , then RI Ia,U u, n RIa,U (i, u, n) RJa,U ( j, u, n) (S26) for the demand of for the demand of DU(u). Eq. E10 becomes: RI (u, n) EI ,C (i, c, n 1) EJ ,C ( j , c, n 1) RI (u, n) 1 (u, c) SU,C (S27) In eq. S27, at least one feasible RI(u,n) exists to ensure that EU (u, c, n) EUmax (u, c) . Otherwise, assume no feasible RI(u,n) exists to ensure EU (u, c, n) EUmax (u, c) . In other words, for any EU u, c, n EUmax (u, c) . RI(u,n), If let RI(u,n) = RIb(u,n), then EU (u, c, n) RI b (u, n) EI ,C (i, c, n 1) EJ ,C ( j, c, n 1) RI b (u, n) 1 RI b (u, n) EIb,C (i, c, n 1) EJb,C ( j, c, n 1) RI b (i, u, n) 1 EUb (u, c, n) EUmax (u, c) , which contradicts the assumption: EU u, c, n EUmax (u, c) . Similarly, a feasible RI(u,n) exists to ensure that EU (u, c, n) EUa (u, c, n) EUmin (u, c) . For crude quality specifications which are calculated on volume basis, eU (u, k , n) i:( i ,u )S I ,U c:( i ,c )S I ,C eC (c, k ) VI ,U ,C (i, u, c, n) i:( i ,u )S I ,U VI ,U (i, u, n) start RI ,U (i, u , n) [TIend eC (c, k ) EI ,C (i, c, n 1) ,U (i , u , n ) TI ,U (i , u , n )] c:( i ,c )S I ,C R ( j , u , n) [T end (i, u , n) T start (i, u , n)] eC (c, k ) E J ,C ( j , c, n 1) J ,U J ,U J ,U c:( i ,c )S I ,C end start end start RI ,U (i, u , n) [TI ,U (i, u , n) TI ,U (i, u , n)] RJ ,U ( j , u , n) [TJ ,U (i, u , n) TJ ,U (i, u , n )] [ RI (u, n) c:( i ,c )S I ,C eC (c, k ) EI ,C (i, c, n 1)] c:( i ,c )S I ,C eC (c, k ) E J ,C ( j , c, n 1) RI (u, n) 1 (u, c) SU,C (S28) In eq. S28, at least one feasible RI(u,n) exists to ensure that eU (u, k , n) eUmax (u, k ) . 12 Otherwise, assume no feasible RI(u,n) exists to ensure eU (u, k , n) eUmax (u, k ) . Then, for any RI(u,n), we have eU u, k , n eUmax u, k . If let RI(u,n) = RIb(u,n), then [ RI b (u, n) eU (u, k , n) c:( i ,c )S I ,C eC (c, k ) EIb,C (i, c, n 1)] c:( i ,c )S I ,C eC (c, k ) E Jb,C ( j , c, n 1) RI (u, n) 1 b eUb (u, k , n) eUmax (u, k ) , which contradicts the assumption: eU u, k , n eUmax u, k . Similarly, a feasible RI(u,n) exists to ensure that eU (u, k , n) eUmin (u, k ) ■ From Theorems 1-3, it can be concluded that the unloading schedule and feed sequence from the robust schedule is feasible for any demand realization within [DL(u), DU(u)]. In other words, from the robust schedule, we can simply adjust feed rates from tanks to CDUs from the robust schedule (i.e., fix the unloading schedule and feed sequence) to achieve any demand requirement within [DL(u), DU(u)]. 13 Table S1 Vessels, Tanks, CDUs, and Economic Data for Example 2 Arrival Time Parcel No: (Crude, Parcel Size kbbl) (hr) 1: (C2, 10) 2: (C6, 100) 3: (C8: 100) 4: (C4: 90) VLCC-1 0 V1 16 5: (C2: 125) V2 24 6: (C5: 125) V3 24 7: (C3: 100) V4 32 8: (C7: 120) VLCC-2 160 9: (C4: 10) 10: (C8: 130) 11: (C3: 120) 12: (C2: 100) V5 176 13: (C6: 100) V6 176 14: (C1: 90) 15: (C7: 125) V7 184 Initial Crude Composition (kbbl) Initial Capacity Inventory Min-Max C1 C2 C3 Tank (kbbl) (kbbl) or C5 or C6 or C7 T1 350 50-570 50 100 100 T2 400 50-570 100 100 100 T3 350 50-570 200 250 200 T4 950 50-570 100 100 50 T5 300 50-570 20 20 20 T6 80 50-570 20 20 20 T7 80 50-570 20 20 20 T8 450 50-570 100 100 100 Flow Rate Limit (kbbl/8 hr) Demurrage Changeover Safe Inventory Parcel-Tank Tank-CDU Cost Loss Penalty Min-Max Min-Max (k$/8 hr) (k$/instance) ($/bbl/8 hr) Crude 10-400 20-50 15 5 0.2 C1 C2 Tanks 1, 6-8 store crudes 1-4 (Class 1); 2-5 store crudes 5-8 (Class 2) C3 CDU1 and CDU3 process crudes 1-4; CDU 2 processes crudes 5-8 Demands for CDUs 1-3 are 1000 kbbl C4 Demand ranges for CDUs 1-3 are 50-100 kbbl/8 hr C5 Crude concentration ranges in Tanks 1-8 are 0-1 C6 Crude concentration ranges in CDUs 1-3 are 0-1 C7 The desire safety stock is 1200 kbbl C8 Tanker 14 C4 or C8 100 100 300 50 20 20 20 150 Margin $/bbl 1.5 1.75 1.85 1.25 1.45 1.65 1.55 1.6 Table S2 Specific gravities, sulfur contents, nitrogen contents, carbon residues, pour point, freeze point, flash point for crudes and acceptable ranges for feeds to CDUs for Example 2 Crude & CDU Specific Gravity Sulfur C1 1.2057 0.0095 C2 1.2339 0.0085 C3 1.2113 0.0080 C4 1.2749 0.0090 C5 1.0375 0.0250 C6 1.0615 0.0235 C7 1.0664 0.0225 C8 1.0968 0.0210 CDU1 Min 1.0000 0.0200 Max 1.0920 0.0242 CDU2 Min 1.0000 0.0200 Max 1.0900 0.0245 CDU3 Min 1.2000 0.0060 Max 1.2700 0.0092 Nitrogen Carbon Residue Pour Point 55.00 0.0450 58.0549 45.00 0.0420 12.0466 50.00 0.0436 21.8409 40.00 0.0350 10.3347 93.00 0.1880 5.1896 88.00 0.1730 4.6626 84.00 0.1540 48.4716 78.00 0.1260 7.5624 75.00 0.1000 4.0000 92.00 0.1800 45.0000 75.00 0.1000 4.0000 91.50 0.1850 48.0000 10.00 0.0100 10.0000 54.00 0.0440 58.0000 15 Freeze Point 270.2996 211.3251 248.0304 168.4381 1412.5240 1286.6348 1015.0334 768.6957 700.0000 1405.0000 700.0000 1410.0000 150.0000 270.0000 Flash Point 207.7017 551.5897 311.3055 661.2327 16.5062 21.3079 29.5074 39.4486 15.0000 39.0000 15.0000 39.2000 200.0000 650.0000 Table S3 Smoke points, Ni contents and Reid vapor pressures for crudes and acceptable ranges for feeds to CDUs for Example 2 Crude & CDU C1 C2 C3 C4 C5 C6 C7 C8 CDU1 Min Max CDU2 Min Max CDU3 Min Max Smoke Point 548.1218 588.8047 567.6004 626.5365 431.4538 455.4485 477.3611 503.5443 400.0000 475.0000 400.0000 470.0000 500.0000 600.0000 Ni 0.075 0.062 0.050 0.035 19.000 18.300 17.500 16.700 15.000 18.800 15.000 18.600 0.010 0.072 Reid Vapor Pressure Asphaltenes Aromatics Paraffins Naphthenes Viscosity 153.6366 0.0850 0.2972 0.3844 0.3414 76.8625 120.4380 0.0650 0.2793 0.4222 0.3203 76.2073 144.8884 0.0500 0.2756 0.3614 0.3022 75.7175 113.5842 0.0700 0.2713 0.4004 0.3443 76.5457 24.1774 0.2000 0.5216 0.2400 0.2384 82.6218 22.5324 0.1890 0.4942 0.3244 0.2302 81.5636 21.1838 0.1750 0.4577 0.2756 0.2407 81.1988 13.8983 0.1500 0.4317 0.3016 0.2439 80.3514 10.0000 0.1500 0.4000 0.2400 0.2000 80.0000 24.0000 0.1960 0.5000 0.3200 0.2420 82.5000 10.0000 0.1500 0.4000 0.2400 0.2000 80.0000 23.9000 0.1950 0.5200 0.3200 0.2410 82.6000 100.0000 0.0500 0.2500 0.3500 0.3000 70.0000 150.0000 0.0800 0.2950 0.4200 0.3440 76.8000 16 Inventory Profile of T1 Inventory Profile of T2 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 260 kbbl 0.00 0.00 14.40 15.00 15.20 21.20 29.20 72.00 Inventory Profile of T3 21.20 42.00 72.00 Inventory Profile of T4 450.00 350.00 400.00 350.00 300.00 300.00 250.00 250.00 200.00 200.00 150.00 150.00 100.00 100.00 50.00 50.00 0.00 0.00 0.00 21.20 27.20 42.00 72.00 0.00 14.40 29.20 Inventory Profile of T5 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 420 kbbl 0.00 27.20 34.00 72.00 Figure S1 Inventory profiles of T1-T5 for Example 1 from the robust schedule in Figure 11 17 72.00 Feed Rates to CDU101 14.00 T1(12.5 kbbl/s) 12.00 10.00 8.00 T4 (6.25 kbbl/s) 6.00 T1 (3.97 kbbl/s) 4.00 T4 (3.68 kbbl/s) 2.00 0.00 0.00 8.00 16.00 24.00 32.00 40.00 48.00 56.00 64.00 72.00 Feed Rates to CDU102 12.00 T3 (11.25 kbbl/s) 10.00 8.00 T2 (6.25 kbbl/s) 6.00 T3 (5.31 kbbl/s) 4.00 2.00 T2 (0.94 kbbl/s) 0.00 0 8 16 24 32 40 48 56 64 72 Figure S2 Feed rates to CDU101 and CDU102 for Example 1 from the robust schedule in Figure 11 18 Inventory Profile of T2 Inventory Profile of T1 350.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 0.00 29.20 72.00 0.00 Inventory Profile of T3 35.20 50.00 72.00 Inventory Profile of T4 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 700.00 600.00 500.00 400.00 300.00 200.00 100.00 0.00 0.00 35.20 42.00 50.00 0.00 72.00 15.00 15.20 21.20 29.20 72.00 Inventory Profile of T5 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 0.00 21.20 27.20 35.20 50.00 72.00 Figure S3 Inventory profiles of T1-T5 for Example 1 from the robust schedule in Figure 12 19 Feed Rates to CDU101 14.00 T4 (12.5 kbbl/s) 12.00 29.2 10.00 T1 (8.56 kbbl/s) 8.00 6.00 4.00 2.00 0.00 0.00 8.00 16.00 24.00 32.00 40.00 48.00 56.00 64.00 72.00 Feed Rates to CDU102 12.00 T5 (10.17 kbbl/s) 10.00 T5 (8.16 kbbl/s) 35.2 8.00 T2 (6.12 kbbl/s) 6.00 T3 (4.34 kbbl/s) T3 (4.26 kbbl/s) 4.00 T2 (2.33 kbbl/s) 2.00 50 0.00 0 8 16 24 32 40 48 56 64 72 Figure S4 Feed rates to CDU101 and CDU102 for Example 1 from the robust schedule in Figure 12 20 Figure S5 Robust schedule for Example 2 from model ROM with demand uncertainty following bounded distribution (Obj = $ 4780.727K) 21 Inventory Profile of T1 Inventory Profile of T2 570 kbbl 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 106.5 kbbl 100.00 50.00 0.00 0 171 175 178 186 336 0 50 Inventory Profile of T3 570 kbbl 0 4 32 187 336 Inventory Profile of T4 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 0 167 36 145 980 kbbl 1,000.00 950.00 900.00 850.00 800.00 750.00 700.00 650.00 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 336 231 kbbl 0 167 Inventory Profile of T5 171 176 179 187 336 Inventory Profile of T6 570 kbbl 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 350.00 300.00 412.5 kbbl 250.00 200.00 150.00 100.00 50.00 0.00 0 18 21 24 28 50 145 196 200 336 0.0 Inventory Profile of T7 0.3 16.0 20.0 24.0 27.2 80.0 186.0 336.0 Inventory Profile of T8 300.00 500.00 450.00 250.00 260 kbbl 400.00 350.00 200.00 300.00 150.00 245 kbbl 250.00 200.00 100.00 150.00 100.00 50.00 50.00 0.00 0.00 0.0 21.1 24.0 189.1 192.0 336.0 0.0 80.0 160.8 162.0 Figure S6 Inventory profiles of T1-T8 for Example 2 from the robust schedule in Figure S5 22 336.0 Feed Rates to CDU101 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 T4 (3.58 kbbl/s) T4 (2.5 kbbl/s) 0 48 96 T2 (2.5 kbbl/s) 144 192 240 288 336 288 336 Feed Rates to CDU102 6.50 6.00 5.50 5.00 4.50 T2 (4.89 kbbl/s) 4.00 3.50 3.00 T3 (2.5 kbbl/s) 2.50 2.00 1.50 1.00 0.50 0.00 0 48 96 T5 (2.72 kbbl/s) 144 192 240 Feed Rates to CDU103 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 T6 (3.47 kbbl/s) T8 (2.69 kbbl/s) 0 48 T1 (2.5 kbbl/s) 96 144 192 240 288 336 Figure S7 Feed rates to CDU101, CDU102 and CDU103 for Example 2 from the robust schedule in Figure S5 23 Inventory Profile of T1 Inventory Profile of T2 400.00 500.00 350.00 450.00 400.00 300.00 350.00 250.00 300.00 200.00 140 kbbl 150.00 250.00 200.00 150.00 100.00 100.00 50.00 50.00 0.00 0.00 0 80 180 182 336 0 65 Inventory Profile of T3 160 164 176 179 187 336 Inventory Profile of T4 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 1,000.00 900.00 800.00 700.00 600.00 473.14 kbbl 500.00 400.00 300.00 200.00 100.00 0.00 0 0 4 6 65 235 336 0 187 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 226.86 kbbl 6 7 27 31 32 336 Inventory Profile of T6 Inventory Profile of T5 0 191 36 235 600.00 550.00 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 0.0 336 0.3 16.0 20.0 24.0 27.2 164.5 168.3 171.5 179.5 336.0 Inventory Profile of T8 Inventory Profile of T7 500.00 180.00 160.00 170 kbbl 140.00 450.00 400.00 350.00 120.00 300.00 100.00 250.00 80.00 245 kbbl 200.00 60.00 150.00 40.00 100.00 20.00 50.00 0.00 0.00 0.0 6.7 9.6 0.0 336.0 80.0 160.0 160.3 Figure S8 Inventory profiles of T1-T8 for Example 2 from the robust schedule in Figure 14 24 336.0 Feed Rates to CDU101 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 T4 (3.22 kbbl/s) T2 (2.68 kbbl/s) 0 48 96 144 192 240 288 336 Feed Rates to CDU102 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 T2 (2.81 kbbl/s) 2.50 2.00 1.50 1.00 0.50 0.00 0 48 T5 (3.25 kbbl/s) T3 (2.88 kbbl/s) 96 144 192 240 288 336 Feed Rates to CDU103 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 T8 (2.69 kbbl/s) 2.50 2.00 1.50 1.00 0.50 0.00 0 48 T6 (3.10 kbbl/s) T1 (3.01 kbbl/s) 96 144 192 240 288 336 Figure S9 Feed rates to CDU101, CDU102 and CDU103 for Example 2 from the robust schedule in Figure 14 25
© Copyright 2026 Paperzz