Photophysical, Electrochemical, and Spectroeletrochemical Investigation of Electronic Push-Pull Benzothiadiazole Fluorophores Monika Wałęsa-Chorab, Marie-Hélène Tremblay, Mohamed Ettaoussi, and W.G. Skene Laboratoire de caractérisation photophysique des matériaux conjugués Département de chimie Université de Montréal CP 6128, Centre-ville Montreal, QC Electronic Supporting Information 1 Figure S1. Normalized absorption spectra of 1 in different solvents. .............................................. 4 Figure S2. Normalized absorption spectra of 2 in different solvents. .............................................. 4 Figure S3. Stokes shift as a function of solvent orientation polarizability (Δf) for 1 (■) and 2 (●).5 Figure S4. Fluorescence maxima as a function of solvent orientation polarizability (Δf) for 1 (■) and 2 (●). ....................................................................................................................... 5 Figure S5. Stokes shift as a function of the Reichardt–Dimroth’s ET(30) solvent index for 1 (■) and 2 (●). ....................................................................................................................... 6 Figure S6. Fluorescence maxima as a function of the Reichardt–Dimroth’s ET(30) solvent index for 1 (■) and 2 (●). ........................................................................................................ 6 Figure S7. Fluorescence change (λex = 456 nm) of 1 in dichloromethane with Bu4NPF6 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and -1000 (▬) mV vs Ag/Ag+ held for 30 sec per potential. .............. 7 Figure S8. Spectroelectrochemistry of 2 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬) and 1300 (▬) mV vs Ag/Ag+ held for 30 sec per potential measured in dichloromethane with Bu4NPF6 as the electrolyte. .............. 7 Figure S9. Fluorescence change (λex = 390 nm) of 2 in dichloromethane with Bu4NPF6 with applied potentials of 0 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential. ................................. 8 Figure S10. Fluorescence change (λex = 467 nm) of 2 in dichloromethane with Bu4NPF6 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential. ................ 8 Figure S11. Photographs of 2 in a PMMA matrix 1:0 (left), 1:10 (middle), and 1:100 (right) when irradiated with a UV light. ............................................................................................. 9 Figure S12. Photographs of 1 (right) and 2 (left) in PDMS matrix (0.1% of compound in PDMS) under ambient (top) and UV light (bottom). ................................................................. 9 Figure S13. Variation of the Iem676 nm/Iem488 nm ratio as a function of excitation wavelength for 1 in dichloromethane with an absorbance maximum of 0.998 (■), 0.0116 (●) and 0.0027 (▲). ............................................................................................................................... 9 Figure S14. Fluorescence spectra of 1 in toluene when excited at 370 nm (▬), 380 nm (▬), 390 nm (▬), 400 nm (▬), 410 nm (▬), 420 nm (▬), 430 nm (▬), 440 nm (▬), 450 nm (▬) and 460 nm (▬). .................................................................................................. 10 Figure S15. Fluorescence spectra of 2 in dichloromethane when excited at 380 nm (▬), 385 nm (▬), 390 nm (▬), 395 nm (▬), 400 nm (▬), 405 nm (▬), 410 nm (▬), 415 nm (▬), 420 nm (▬), 425 nm (▬), 430 nm (▬) and 450 nm (▬).................................. 10 Figure S16. Variation of the Iem681 nm/Iem525 nm ratio as a function of excitation wavelength for 2 in dichloromethane with an absorbance maximum of 0.984 (■), 0.0103 (●) and 0.0021 (▲). ............................................................................................................................. 11 Figure S17. Fluorescence decays of 1 monitored at 629 nm in toluene (▬), 683 nm in THF (▬), 676 nm in dichloromethane (▬), 488 nm in dichloromethane (▬), 755 nm in acetonitrile (▬), and 782 nm in DMSO (▬). ............................................................. 12 Figure S18. Fluorescence decays of 2 monitored at 635 nm in toluene (▬), 681 nm in dichloromethane (▬), 700 nm in THF (▬), 743 nm in acetonitrile (▬), 766 nm in DMSO (▬). ................................................................................................................. 12 Figure S19. Transient absorption spectra of 1 in anhydrous and deaerated acetonitrile after 0 (▬), 5 (▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬), 35 (▬) and 40 (▬) ns excitation at 449 nm measured with a gated ICCD camera. ............................................................ 13 S2 Figure S20. Transient absorption decay of 1 monitored at 360 nm with a photomultiplier tube in anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 728 ns. ..................................................................................................................................... 13 Figure S21. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 2.7 s. ..................................................................................................................................... 14 Figure S22. Transient absorption spectra of 1 in anhydrous and deaerated toluene after 0 (▬), 10 (▬), 20 (▬), 30 (▬) and 40 (▬) ns exciting at 462 nm measured with a gated ICCD camera. ........................................................................................................................ 14 Figure S23. Transient absorption decay of 1 monitored at 380 nm with a photomultiplier tube in anhydrous and deaerated toluene after exciting at 462 nm. The lifetime is 10.4 ns. .. 15 Figure S24. Transient absorption decay of 1 monitored at 560 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 462 nm. The lifetime is 2.3 ns. ............. 15 Figure S25. Transient absorption spectra of 1 in anhydrous and deaerated dichloromethane after 0 (▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬) and 35 (▬) ns exciting at 456 nm measured with a gated ICCD camera. ......................................................................... 16 Figure S26. Transient absorption decay of 1 monitored at 370 nm with a photomultiplier tube in anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 14.3 ns. ..................................................................................................................................... 16 Figure S27. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 9.9 ns. ..................................................................................................................................... 17 Figure S28. Transient absorption spectra of 2 in anhydrous and deaerated toluene after 0 (▬), 10 (▬), 20 (▬), 30 (▬), 40 (▬) and 50 (▬) ns after exciting at 470 nm. ..................... 17 Figure S29. Transient absorption decay of 2 monitored at 385 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 9.4 ns (7.31%) and 314 ns (92.69%). ................................................................................................... 18 Figure S30. Transient absorption decay of 2 monitored at 540 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 17.5 ns. ........... 18 Figure S31. Transient absorption decay of 2 monitored at 610 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 2.4 ns. ............. 19 Figure S32. Calculated HOMO and LUMO Frontier orbitals of 1 in hexane. ............................... 20 Figure S33. Calculated HOMO and LUMO Frontier orbitals of 2 in hexane. ............................... 20 Figure S34. Calculated molecular orbitals of 2 in hexane. ............................................................ 21 Figure S35. Calculated HOMO and LUMO energy levels of 2 in different solvents. .................. 21 S3 DCM Et2O EtOAC acetone hexane MeCN DMSO THF toluene Normalized absorbance 1.0 0.8 0.6 0.4 0.2 0.0 400 500 600 700 Wavelength (nm) Figure S1. Normalized absorption spectra of 1 in different solvents. DCM EtOAc THF hexane MeCN DMSO acetone toluene Et2O Normalized absorbance 1.0 0.8 0.6 0.4 0.2 0.0 400 500 600 700 800 Wavelength (nm) Figure S2. Normalized absorption spectra of 2 in different solvents. S4 Stokes shift (cm-1) 9000 8000 7000 6000 5000 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 f Figure S3. Stokes shift as a function of solvent orientation polarizability (Δf) for 1 (■) and 2 (●). Fluorencence maxima (nm) 800 750 700 650 600 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 f Figure S4. Fluorescence maxima as a function of solvent orientation polarizability (Δf) for 1 (■) and 2 (●). S5 9000 Stokes shift (cm-1) 8000 7000 6000 5000 30 32 34 36 38 40 42 44 46 ET(30) Figure S5. Stokes shift as a function of the Reichardt–Dimroth’s ET(30) solvent index for 1 (■) and 2 (●). Fluorescence maxima (nm) 800 750 700 650 600 30 32 34 36 38 40 42 44 46 ET(30) Figure S6. Fluorescence maxima as a function of the Reichardt–Dimroth’s ET(30) solvent index for 1 (■) and 2 (●). S6 Emission intensity (a.u.) 2500000 2000000 1500000 1000000 500000 0 450 500 550 600 650 700 750 Wavelength (nm) Figure S7. Fluorescence change (λex = 456 nm) of 1 in dichloromethane with Bu4NPF6 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and -1000 (▬) mV vs Ag/Ag+ held for 30 sec per potential. 0.7 Absorbance (a.u.) 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 600 800 1000 Wavelength (nm) Figure S8. Spectroelectrochemistry of 2 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬) and 1300 (▬) mV vs Ag/Ag+ held for 30 sec per potential measured in dichloromethane with Bu4NPF6 as the electrolyte. S7 600000 Emission intensity (a.u.) 500000 400000 300000 200000 100000 0 450 500 550 600 650 700 750 Wavelength (nm) Figure S9. Fluorescence change (λex = 390 nm) of 2 in dichloromethane with Bu4NPF6 with applied potentials of 0 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential. Emission intensity (a.u.) 400000 350000 300000 250000 200000 150000 100000 50000 0 500 550 600 650 700 750 Wavelength (nm) Figure S10. Fluorescence change (λex = 467 nm) of 2 in dichloromethane with Bu4NPF6 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential. S8 Figure S11. Photographs of 2 in a PMMA matrix 1:0 (left), 1:10 (middle), and 1:100 (right) when irradiated with a UV light. Figure S12. Photographs of 1 (right) and 2 (left) in PDMS matrix (0.1% of compound in PDMS) under ambient (top) and UV light (bottom). 1600 1400 Iem676nm/Iem488nm 1200 1000 800 600 400 200 0 -200 370 380 390 400 410 420 430 440 450 460 excitation wavelength (nm) Figure S13. Variation of the Iem676 nm/Iem488 nm ratio as a function of excitation wavelength for 1 in dichloromethane with an absorbance maximum of 0.998 (■), 0.0116 (●) and 0.0027 (▲). S9 Emission intensity (a.u.) 800000 600000 400000 200000 0 450 500 550 600 650 700 750 800 Wavelength (nm) Figure S14. Fluorescence spectra of 1 in toluene when excited at 370 nm (▬), 380 nm (▬), 390 nm (▬), 400 nm (▬), 410 nm (▬), 420 nm (▬), 430 nm (▬), 440 nm (▬), 450 nm (▬) and 460 nm (▬). Emission intensity (a.u.) 60000 50000 40000 30000 20000 10000 0 450 500 550 600 650 700 750 Wavelength (nm) Figure S15. Fluorescence spectra of 2 in dichloromethane when excited at 380 nm (▬), 385 nm (▬), 390 nm (▬), 395 nm (▬), 400 nm (▬), 405 nm (▬), 410 nm (▬), 415 nm (▬), 420 nm (▬), 425 nm (▬), 430 nm (▬) and 450 nm (▬). S10 5 Iem 681 nm/Iem525 nm 4 3 2 1 0 370 380 390 400 410 420 430 440 450 460 excitation wavelength (nm) Figure S16. Variation of the Iem681 nm/Iem525 nm ratio as a function of excitation wavelength for 2 in dichloromethane with an absorbance maximum of 0.984 (■), 0.0103 (●) and 0.0021 (▲). Table S1. Fluorescence lifetimes of 1 and 2 measured in various solvents.a 1 2 solvent 2 τ1 τ2 τ3 χ τ1 τ2 τ3 τ4 χ2 7.0 4.4 6.3 Toluene 3.5 (10) 1.303 1.179 (90) (6) (94) 7.4 2.4 (3)b 1.141b (97)b 0.07 0.9 3.5 7.6 Dichloromethane 1.082 (8) (6) (65) (21) 5.4 c 1.133 (100)c 6.7 2.9 6.2 THF 3.4 (9) 1.196 1.188 (91) (95) (5) 2.3 8.1 2.4 8.7 Acetonitrile 0.9 (21) 1.050 0.864 (13) (65) (69) (32) 2.7 7.4 0.1 0.9 2.0 7.7 DMSO 0.8 (6) 1.171 1.369 (11) (83) (41) (12) (20) (19) a Values in parentheses are weighted signal percentage of the corresponding lifetimeb Monitored at 676 nmc Monitored at 488 nm. S11 30000 Counts 25000 20000 15000 10000 5000 0 10 20 30 40 50 Time (ns) Figure S17. Fluorescence decays of 1 monitored at 629 nm in toluene (▬), 683 nm in THF (▬), 676 nm in dichloromethane (▬), 488 nm in dichloromethane (▬), 755 nm in acetonitrile (▬), and 782 nm in DMSO (▬). 30000 Counts 25000 20000 15000 10000 5000 0 10 20 30 40 50 Time (ns) Figure S18. Fluorescence decays of 2 monitored at 635 nm in toluene (▬), 681 nm in dichloromethane (▬), 700 nm in THF (▬), 743 nm in acetonitrile (▬), 766 nm in DMSO (▬). S12 Average absorbance 0.15 0.10 0.05 0.00 -0.05 -0.10 400 500 600 700 Wavelength (nm) Figure S19. Transient absorption spectra of 1 in anhydrous and deaerated acetonitrile after 0 (▬), 5 (▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬), 35 (▬) and 40 (▬) ns excitation at 449 nm measured with a gated ICCD camera. 0.010 absorbance 0.008 0.006 0.004 0.002 0.000 -0.002 0 2000 4000 6000 8000 Time (ns) Figure S20. Transient absorption decay of 1 monitored at 360 nm with a photomultiplier tube in anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 728 ns. S13 0.010 0.009 absorbance 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.000 -0.001 -0.002 0 2000 4000 6000 8000 10000 Time (ns) Figure S21. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 2.7 s. Average absorbance 0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 300 400 500 600 700 Wavelength (nm) Figure S22. Transient absorption spectra of 1 in anhydrous and deaerated toluene after 0 (▬), 10 (▬), 20 (▬), 30 (▬) and 40 (▬) ns exciting at 462 nm measured with a gated ICCD camera. S14 0.035 absorbance 0.030 0.025 0.020 0.015 0.010 0.005 0.000 -0.005 440 460 480 500 520 540 Time (ns) Figure S23. Transient absorption decay of 1 monitored at 380 nm with a photomultiplier tube in anhydrous and deaerated toluene after exciting at 462 nm. The lifetime is 10.4 ns. 0.5 absorbance 0.4 0.3 0.2 0.1 0.0 440 450 460 470 480 490 500 Time (ns) Figure S24. Transient absorption decay of 1 monitored at 560 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 462 nm. The lifetime is 2.3 ns. S15 Average absorbance 0.05 0.00 -0.05 -0.10 300 400 500 600 700 Wavelength (nm) Figure S25. Transient absorption spectra of 1 in anhydrous and deaerated dichloromethane after 0 (▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬) and 35 (▬) ns exciting at 456 nm measured with a gated ICCD camera. 0.012 absorbance 0.010 0.008 0.006 0.004 0.002 0.000 -0.002 440 460 480 500 520 540 Time (ns) Figure S26. Transient absorption decay of 1 monitored at 370 nm with a photomultiplier tube in anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 14.3 ns. S16 0.035 absorbance 0.030 0.025 0.020 0.015 0.010 0.005 0.000 -0.005 420 440 460 480 500 520 540 Time (ns) Average absorbance Figure S27. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 9.9 ns. 0.10 0.05 0.00 -0.05 -0.10 -0.15 400 500 600 700 800 Wavelength (nm) Figure S28. Transient absorption spectra of 2 in anhydrous and deaerated toluene after 0 (▬), 10 (▬), 20 (▬), 30 (▬), 40 (▬) and 50 (▬) ns after exciting at 470 nm. S17 absorbance 0.025 0.020 0.015 0.010 0.005 0.000 0 1000 2000 Time (ns) Figure S29. Transient absorption decay of 2 monitored at 385 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 9.4 ns (7.31%) and 314 ns (92.69%). 0.04 absorbance 0.03 0.02 0.01 0.00 -0.01 420 440 460 480 500 520 540 Time (ns) Figure S30. Transient absorption decay of 2 monitored at 540 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 17.5 ns. S18 0.5 absorbance 0.4 0.3 0.2 0.1 0.0 440 450 460 470 480 Time (ns) Figure S31. Transient absorption decay of 2 monitored at 610 nm with a photomultiplier tube in anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 2.4 ns. S19 Figure S32. Calculated HOMO and LUMO Frontier orbitals of 1 in hexane. Figure S33. Calculated HOMO and LUMO Frontier orbitals of 2 in hexane. S20 Figure S34. Calculated molecular orbitals of 2 in hexane. Figure S35. Calculated HOMO and LUMO energy levels of 2 in different solvents. S21 Table S2. TD-DFT calculations including solvation effects of 1 and 2 in hexane. 1 2 E (nm) OSa E (nm) S1 635 0.2707 732 (HOMO–LUMO) (HOMO–LUMO) S2 413 0.2052 582 (HOMO– (HOMO–LUMO+1) LUMO+1) S3 383 0.1801 413 (HOMO-1 – (HOMO-1 – LUMO) LUMO) S4 365 0.0020 392 S5 322 0.0003 357 S6 301 0.2148 347 a Oscillator strength corresponds to the strength of the transition. OSa 0.3512 0.0835 0.2618 0.0004 0.0004 0.0167 Optimized B3LYP/6-31G(d) ground-state Cartesian coordinates of 1. S 16.0 -0.55063498 3.11478090 -0.57867098 N 7.0 0.71806502 2.09505200 -0.38236600 N 7.0 -1.79000998 2.05811810 -0.37386000 C 6.0 0.21398699 0.87724501 -0.14140999 C 6.0 -1.24547899 0.85595900 -0.13961300 C 6.0 -1.96978700 -0.37016299 0.05677800 C 6.0 -1.18701005 -1.49690199 0.23876899 C 6.0 0.23274100 -1.47525406 0.24763800 C 6.0 0.98429698 -0.32495901 0.06322400 C 6.0 -3.44793510 -0.44228601 0.06361900 C 6.0 -4.10345888 -1.56242895 -0.48639399 C 6.0 -5.48894596 -1.67626202 -0.45795199 C 6.0 -6.26304817 -0.65732801 0.12468300 C 6.0 -5.62511778 0.47117999 0.66978502 C 6.0 -4.23875713 0.57513601 0.63351500 C 6.0 2.45831108 -0.34868801 0.06667900 C 6.0 3.15926909 -1.46569705 -0.42878899 C 6.0 4.54630613 -1.53934896 -0.40661600 C 6.0 5.32617807 -0.48787099 0.13796400 C 6.0 4.62371683 0.64485902 0.62071401 C 6.0 3.23614192 0.70760298 0.57956600 H 1.0 -1.67385697 -2.44996500 0.42668599 H 1.0 0.74647301 -2.41110492 0.44607800 H 1.0 -3.52134991 -2.34428501 -0.96504903 H 1.0 -5.97608185 -2.54311895 -0.89374602 H 1.0 -6.21881580 1.26010597 1.12122595 H 1.0 -3.76216602 1.45140505 1.05622005 H 1.0 2.60885906 -2.28865194 -0.87770402 S22 H H H C N N C C H H H H H H 1.0 5.02274609 -2.41627312 -0.82860702 1.0 5.16289902 1.48884201 1.03452599 1.0 2.74716997 1.59595096 0.96277899 6.0 -7.69182587 -0.76667702 0.15751800 7.0 -8.85267830 -0.85794997 0.18544801 7.0 6.70549393 -0.56529200 0.19751000 6.0 7.47710800 0.60853201 0.58174902 6.0 7.39631414 -1.65738106 -0.47323599 1.0 7.06853390 -2.62844205 -0.08387100 1.0 7.23614788 -1.65064394 -1.56327200 1.0 8.46757603 -1.57061803 -0.28374299 1.0 8.53659725 0.34748900 0.59941000 1.0 7.33877707 1.44972706 -0.11585700 1.0 7.20253420 0.94796902 1.58739805 Optimized B3LYP/6-31G(d) ground-state Cartesian coordinates of 2. S 16.0 -0.10739800 3.14883995 -0.63473499 N 7.0 1.14594495 2.11385703 -0.42291600 N 7.0 -1.36171401 2.11194897 -0.42010701 C 6.0 0.62457103 0.90641397 -0.16768700 C 6.0 -0.83482498 0.90547502 -0.16927999 C 6.0 -1.57626700 -0.30873799 0.03866800 C 6.0 -0.80856800 -1.44474602 0.23374499 C 6.0 0.61023599 -1.44231498 0.24772500 C 6.0 1.37839198 -0.30366901 0.05368600 C 6.0 -3.05367589 -0.36125001 0.04745500 C 6.0 -3.72453904 -1.48963904 -0.47038400 C 6.0 -5.11100388 -1.58546400 -0.44023600 C 6.0 -5.84608889 -0.53479499 0.11284300 C 6.0 -5.21850300 0.60194403 0.62694699 C 6.0 -3.83095908 0.68454498 0.58723700 C 6.0 2.85088396 -0.34665099 0.06446000 C 6.0 3.53944206 -1.48309898 -0.40482101 C 6.0 4.92484903 -1.57425904 -0.37522599 C 6.0 5.71625996 -0.52151000 0.15109500 C 6.0 5.02665186 0.62972403 0.60902798 C 6.0 3.64061093 0.70981097 0.55979002 H 1.0 -1.30817604 -2.38912892 0.43108699 H 1.0 1.11012697 -2.38265395 0.45928499 H 1.0 -3.15387702 -2.29228997 -0.92713600 H 1.0 -5.62247181 -2.44974804 -0.84669101 H 1.0 -5.81297588 1.40172100 1.05208600 H 1.0 -3.34287810 1.56601405 0.98425102 H 1.0 2.98057795 -2.30786896 -0.83956301 H 1.0 5.39195824 -2.46561694 -0.77697301 H 1.0 5.57535887 1.47415805 1.00925195 S23 H N C C H H H H H H N O O 1.0 3.16166806 7.0 7.09273005 6.0 7.87906790 6.0 7.77268219 1.0 7.43377113 1.0 7.61357212 1.0 8.84460354 1.0 8.93491840 1.0 7.75362396 1.0 7.60598993 7.0 -7.30675697 8.0 -7.83836508 8.0 -7.93590593 1.61162198 -0.61454201 0.54870099 -1.73923504 -2.69161606 -1.77151704 -1.65642500 0.27394199 1.39021397 0.89346802 -0.62546599 -1.64077199 0.31655100 0.92350203 0.21549000 0.60179901 -0.41092300 0.01426100 -1.50032496 -0.22408500 0.62204403 -0.09733400 1.60637295 0.14946000 -0.31202301 0.64161098 S24
© Copyright 2025 Paperzz