Photophysical, Electrochemical, and Spectroeletrochemical

Photophysical, Electrochemical, and Spectroeletrochemical Investigation of Electronic
Push-Pull Benzothiadiazole Fluorophores
Monika Wałęsa-Chorab, Marie-Hélène Tremblay, Mohamed Ettaoussi, and W.G. Skene
Laboratoire de caractérisation photophysique des matériaux conjugués
Département de chimie
Université de Montréal
CP 6128, Centre-ville
Montreal, QC
Electronic Supporting Information
1
Figure S1. Normalized absorption spectra of 1 in different solvents. .............................................. 4
Figure S2. Normalized absorption spectra of 2 in different solvents. .............................................. 4
Figure S3. Stokes shift as a function of solvent orientation polarizability (Δf) for 1 (■) and 2 (●).5
Figure S4. Fluorescence maxima as a function of solvent orientation polarizability (Δf) for 1 (■)
and 2 (●). ....................................................................................................................... 5
Figure S5. Stokes shift as a function of the Reichardt–Dimroth’s ET(30) solvent index for 1 (■)
and 2 (●). ....................................................................................................................... 6
Figure S6. Fluorescence maxima as a function of the Reichardt–Dimroth’s ET(30) solvent index
for 1 (■) and 2 (●). ........................................................................................................ 6
Figure S7. Fluorescence change (λex = 456 nm) of 1 in dichloromethane with Bu4NPF6 with
applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200
(▬), 1300 (▬) and -1000 (▬) mV vs Ag/Ag+ held for 30 sec per potential. .............. 7
Figure S8. Spectroelectrochemistry of 2 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900
(▬), 1000 (▬), 1100 (▬), 1200 (▬) and 1300 (▬) mV vs Ag/Ag+ held for 30 sec
per potential measured in dichloromethane with Bu4NPF6 as the electrolyte. .............. 7
Figure S9. Fluorescence change (λex = 390 nm) of 2 in dichloromethane with Bu4NPF6 with
applied potentials of 0 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300
(▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential. ................................. 8
Figure S10. Fluorescence change (λex = 467 nm) of 2 in dichloromethane with Bu4NPF6 with
applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200
(▬), 1300 (▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential. ................ 8
Figure S11. Photographs of 2 in a PMMA matrix 1:0 (left), 1:10 (middle), and 1:100 (right) when
irradiated with a UV light. ............................................................................................. 9
Figure S12. Photographs of 1 (right) and 2 (left) in PDMS matrix (0.1% of compound in PDMS)
under ambient (top) and UV light (bottom). ................................................................. 9
Figure S13. Variation of the Iem676 nm/Iem488 nm ratio as a function of excitation wavelength for 1 in
dichloromethane with an absorbance maximum of 0.998 (■), 0.0116 (●) and 0.0027
(▲). ............................................................................................................................... 9
Figure S14. Fluorescence spectra of 1 in toluene when excited at 370 nm (▬), 380 nm (▬), 390
nm (▬), 400 nm (▬), 410 nm (▬), 420 nm (▬), 430 nm (▬), 440 nm (▬), 450 nm
(▬) and 460 nm (▬). .................................................................................................. 10
Figure S15. Fluorescence spectra of 2 in dichloromethane when excited at 380 nm (▬), 385 nm
(▬), 390 nm (▬), 395 nm (▬), 400 nm (▬), 405 nm (▬), 410 nm (▬), 415 nm
(▬), 420 nm (▬), 425 nm (▬), 430 nm (▬) and 450 nm (▬).................................. 10
Figure S16. Variation of the Iem681 nm/Iem525 nm ratio as a function of excitation wavelength for 2 in
dichloromethane with an absorbance maximum of 0.984 (■), 0.0103 (●) and 0.0021
(▲). ............................................................................................................................. 11
Figure S17. Fluorescence decays of 1 monitored at 629 nm in toluene (▬), 683 nm in THF (▬),
676 nm in dichloromethane (▬), 488 nm in dichloromethane (▬), 755 nm in
acetonitrile (▬), and 782 nm in DMSO (▬). ............................................................. 12
Figure S18. Fluorescence decays of 2 monitored at 635 nm in toluene (▬), 681 nm in
dichloromethane (▬), 700 nm in THF (▬), 743 nm in acetonitrile (▬), 766 nm in
DMSO (▬). ................................................................................................................. 12
Figure S19. Transient absorption spectra of 1 in anhydrous and deaerated acetonitrile after 0 (▬),
5 (▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬), 35 (▬) and 40 (▬) ns excitation at
449 nm measured with a gated ICCD camera. ............................................................ 13
S2
Figure S20. Transient absorption decay of 1 monitored at 360 nm with a photomultiplier tube in
anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 728 ns.
..................................................................................................................................... 13
Figure S21. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in
anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 2.7 s.
..................................................................................................................................... 14
Figure S22. Transient absorption spectra of 1 in anhydrous and deaerated toluene after 0 (▬), 10
(▬), 20 (▬), 30 (▬) and 40 (▬) ns exciting at 462 nm measured with a gated ICCD
camera. ........................................................................................................................ 14
Figure S23. Transient absorption decay of 1 monitored at 380 nm with a photomultiplier tube in
anhydrous and deaerated toluene after exciting at 462 nm. The lifetime is 10.4 ns. .. 15
Figure S24. Transient absorption decay of 1 monitored at 560 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 462 nm. The lifetime is 2.3 ns. ............. 15
Figure S25. Transient absorption spectra of 1 in anhydrous and deaerated dichloromethane after 0
(▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬) and 35 (▬) ns exciting at 456 nm
measured with a gated ICCD camera. ......................................................................... 16
Figure S26. Transient absorption decay of 1 monitored at 370 nm with a photomultiplier tube in
anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 14.3 ns.
..................................................................................................................................... 16
Figure S27. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in
anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 9.9 ns.
..................................................................................................................................... 17
Figure S28. Transient absorption spectra of 2 in anhydrous and deaerated toluene after 0 (▬), 10
(▬), 20 (▬), 30 (▬), 40 (▬) and 50 (▬) ns after exciting at 470 nm. ..................... 17
Figure S29. Transient absorption decay of 2 monitored at 385 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 9.4 ns (7.31%)
and 314 ns (92.69%). ................................................................................................... 18
Figure S30. Transient absorption decay of 2 monitored at 540 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 17.5 ns. ........... 18
Figure S31. Transient absorption decay of 2 monitored at 610 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 2.4 ns. ............. 19
Figure S32. Calculated HOMO and LUMO Frontier orbitals of 1 in hexane. ............................... 20
Figure S33. Calculated HOMO and LUMO Frontier orbitals of 2 in hexane. ............................... 20
Figure S34. Calculated molecular orbitals of 2 in hexane. ............................................................ 21
Figure S35. Calculated HOMO and LUMO energy levels of 2 in different solvents. .................. 21
S3
DCM
Et2O
EtOAC
acetone
hexane
MeCN
DMSO
THF
toluene
Normalized absorbance
1.0
0.8
0.6
0.4
0.2
0.0
400
500
600
700
Wavelength (nm)
Figure S1. Normalized absorption spectra of 1 in different solvents.
DCM
EtOAc
THF
hexane
MeCN
DMSO
acetone
toluene
Et2O
Normalized absorbance
1.0
0.8
0.6
0.4
0.2
0.0
400
500
600
700
800
Wavelength (nm)
Figure S2. Normalized absorption spectra of 2 in different solvents.
S4
Stokes shift (cm-1)
9000
8000
7000
6000
5000
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
f
Figure S3. Stokes shift as a function of solvent orientation polarizability (Δf) for 1 (■) and 2 (●).
Fluorencence maxima (nm)
800
750
700
650
600
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
f
Figure S4. Fluorescence maxima as a function of solvent orientation polarizability (Δf) for 1 (■)
and 2 (●).
S5
9000
Stokes shift (cm-1)
8000
7000
6000
5000
30
32
34
36
38
40
42
44
46
ET(30)
Figure S5. Stokes shift as a function of the Reichardt–Dimroth’s ET(30) solvent index for 1 (■)
and 2 (●).
Fluorescence maxima (nm)
800
750
700
650
600
30
32
34
36
38
40
42
44
46
ET(30)
Figure S6. Fluorescence maxima as a function of the Reichardt–Dimroth’s ET(30) solvent index
for 1 (■) and 2 (●).
S6
Emission intensity (a.u.)
2500000
2000000
1500000
1000000
500000
0
450
500
550
600
650
700
750
Wavelength (nm)
Figure S7. Fluorescence change (λex = 456 nm) of 1 in dichloromethane with Bu4NPF6 with
applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300
(▬) and -1000 (▬) mV vs Ag/Ag+ held for 30 sec per potential.
0.7
Absorbance (a.u.)
0.6
0.5
0.4
0.3
0.2
0.1
0.0
400
600
800
1000
Wavelength (nm)
Figure S8. Spectroelectrochemistry of 2 with applied potentials of 0 (▬), 700 (▬), 800 (▬), 900
(▬), 1000 (▬), 1100 (▬), 1200 (▬) and 1300 (▬) mV vs Ag/Ag+ held for 30 sec per potential
measured in dichloromethane with Bu4NPF6 as the electrolyte.
S7
600000
Emission intensity (a.u.)
500000
400000
300000
200000
100000
0
450
500
550
600
650
700
750
Wavelength (nm)
Figure S9. Fluorescence change (λex = 390 nm) of 2 in dichloromethane with Bu4NPF6 with
applied potentials of 0 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300 (▬) and
1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential.
Emission intensity (a.u.)
400000
350000
300000
250000
200000
150000
100000
50000
0
500
550
600
650
700
750
Wavelength (nm)
Figure S10. Fluorescence change (λex = 467 nm) of 2 in dichloromethane with Bu4NPF6 with
applied potentials of 0 (▬), 700 (▬), 800 (▬), 900 (▬), 1000 (▬), 1100 (▬), 1200 (▬), 1300
(▬) and 1400 (▬) mV vs Ag/Ag+ held for 30 sec per potential.
S8
Figure S11. Photographs of 2 in a PMMA matrix 1:0 (left), 1:10 (middle), and 1:100 (right) when
irradiated with a UV light.
Figure S12. Photographs of 1 (right) and 2 (left) in PDMS matrix (0.1% of compound in PDMS)
under ambient (top) and UV light (bottom).
1600
1400
Iem676nm/Iem488nm
1200
1000
800
600
400
200
0
-200
370
380
390
400
410
420
430
440
450
460
excitation wavelength (nm)
Figure S13. Variation of the Iem676 nm/Iem488 nm ratio as a function of excitation wavelength for 1 in
dichloromethane with an absorbance maximum of 0.998 (■), 0.0116 (●) and 0.0027 (▲).
S9
Emission intensity (a.u.)
800000
600000
400000
200000
0
450
500
550
600
650
700
750
800
Wavelength (nm)
Figure S14. Fluorescence spectra of 1 in toluene when excited at 370 nm (▬), 380 nm (▬), 390
nm (▬), 400 nm (▬), 410 nm (▬), 420 nm (▬), 430 nm (▬), 440 nm (▬), 450 nm (▬) and
460 nm (▬).
Emission intensity (a.u.)
60000
50000
40000
30000
20000
10000
0
450
500
550
600
650
700
750
Wavelength (nm)
Figure S15. Fluorescence spectra of 2 in dichloromethane when excited at 380 nm (▬), 385 nm
(▬), 390 nm (▬), 395 nm (▬), 400 nm (▬), 405 nm (▬), 410 nm (▬), 415 nm (▬), 420 nm
(▬), 425 nm (▬), 430 nm (▬) and 450 nm (▬).
S10
5
Iem 681 nm/Iem525 nm
4
3
2
1
0
370
380
390
400
410
420
430
440
450
460
excitation wavelength (nm)
Figure S16. Variation of the Iem681 nm/Iem525 nm ratio as a function of excitation wavelength for 2 in
dichloromethane with an absorbance maximum of 0.984 (■), 0.0103 (●) and 0.0021 (▲).
Table S1. Fluorescence lifetimes of 1 and 2 measured in various solvents.a
1
2
solvent
2
τ1
τ2
τ3
χ
τ1
τ2
τ3
τ4
χ2
7.0
4.4
6.3
Toluene
3.5 (10)
1.303
1.179
(90)
(6)
(94)
7.4
2.4 (3)b
1.141b
(97)b
0.07
0.9
3.5
7.6
Dichloromethane
1.082
(8)
(6)
(65)
(21)
5.4
c
1.133
(100)c
6.7
2.9
6.2
THF
3.4 (9)
1.196
1.188
(91)
(95)
(5)
2.3
8.1
2.4
8.7
Acetonitrile
0.9 (21)
1.050
0.864
(13)
(65)
(69)
(32)
2.7
7.4
0.1
0.9
2.0
7.7
DMSO
0.8 (6)
1.171
1.369
(11)
(83)
(41)
(12)
(20)
(19)
a
Values in parentheses are weighted signal percentage of the corresponding lifetimeb Monitored
at 676 nmc Monitored at 488 nm.
S11
30000
Counts
25000
20000
15000
10000
5000
0
10
20
30
40
50
Time (ns)
Figure S17. Fluorescence decays of 1 monitored at 629 nm in toluene (▬), 683 nm in THF (▬),
676 nm in dichloromethane (▬), 488 nm in dichloromethane (▬), 755 nm in acetonitrile (▬),
and 782 nm in DMSO (▬).
30000
Counts
25000
20000
15000
10000
5000
0
10
20
30
40
50
Time (ns)
Figure S18. Fluorescence decays of 2 monitored at 635 nm in toluene (▬), 681 nm in
dichloromethane (▬), 700 nm in THF (▬), 743 nm in acetonitrile (▬), 766 nm in DMSO (▬).
S12
Average  absorbance
0.15
0.10
0.05
0.00
-0.05
-0.10
400
500
600
700
Wavelength (nm)
Figure S19. Transient absorption spectra of 1 in anhydrous and deaerated acetonitrile after 0 (▬),
5 (▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬), 35 (▬) and 40 (▬) ns excitation at 449 nm
measured with a gated ICCD camera.
0.010
 absorbance
0.008
0.006
0.004
0.002
0.000
-0.002
0
2000
4000
6000
8000
Time (ns)
Figure S20. Transient absorption decay of 1 monitored at 360 nm with a photomultiplier tube in
anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 728 ns.
S13
0.010
0.009
 absorbance
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000
-0.001
-0.002
0
2000
4000
6000
8000
10000
Time (ns)
Figure S21. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in
anhydrous and deaerated acetonitrile after exciting at 449 nm. The lifetime is 2.7 s.
Average  absorbance
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20
300
400
500
600
700
Wavelength (nm)
Figure S22. Transient absorption spectra of 1 in anhydrous and deaerated toluene after 0 (▬), 10
(▬), 20 (▬), 30 (▬) and 40 (▬) ns exciting at 462 nm measured with a gated ICCD camera.
S14
0.035
 absorbance
0.030
0.025
0.020
0.015
0.010
0.005
0.000
-0.005
440
460
480
500
520
540
Time (ns)
Figure S23. Transient absorption decay of 1 monitored at 380 nm with a photomultiplier tube in
anhydrous and deaerated toluene after exciting at 462 nm. The lifetime is 10.4 ns.
0.5
 absorbance
0.4
0.3
0.2
0.1
0.0
440
450
460
470
480
490
500
Time (ns)
Figure S24. Transient absorption decay of 1 monitored at 560 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 462 nm. The lifetime is 2.3 ns.
S15
Average  absorbance
0.05
0.00
-0.05
-0.10
300
400
500
600
700
Wavelength (nm)
Figure S25. Transient absorption spectra of 1 in anhydrous and deaerated dichloromethane after 0
(▬), 10 (▬), 15 (▬), 20 (▬), 25 (▬), 30 (▬) and 35 (▬) ns exciting at 456 nm measured with
a gated ICCD camera.
0.012
 absorbance
0.010
0.008
0.006
0.004
0.002
0.000
-0.002
440
460
480
500
520
540
Time (ns)
Figure S26. Transient absorption decay of 1 monitored at 370 nm with a photomultiplier tube in
anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 14.3 ns.
S16
0.035
 absorbance
0.030
0.025
0.020
0.015
0.010
0.005
0.000
-0.005
420
440
460
480
500
520
540
Time (ns)
Average  absorbance
Figure S27. Transient absorption decay of 1 monitored at 540 nm with a photomultiplier tube in
anhydrous and deaerated dichloromethane exciting at 456 nm. The lifetime is 9.9 ns.
0.10
0.05
0.00
-0.05
-0.10
-0.15
400
500
600
700
800
Wavelength (nm)
Figure S28. Transient absorption spectra of 2 in anhydrous and deaerated toluene after 0 (▬), 10
(▬), 20 (▬), 30 (▬), 40 (▬) and 50 (▬) ns after exciting at 470 nm.
S17
absorbance
0.025
0.020
0.015
0.010
0.005
0.000
0
1000
2000
Time (ns)
Figure S29. Transient absorption decay of 2 monitored at 385 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 9.4 ns (7.31%) and 314 ns
(92.69%).
0.04
 absorbance
0.03
0.02
0.01
0.00
-0.01
420
440
460
480
500
520
540
Time (ns)
Figure S30. Transient absorption decay of 2 monitored at 540 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 17.5 ns.
S18
0.5
 absorbance
0.4
0.3
0.2
0.1
0.0
440
450
460
470
480
Time (ns)
Figure S31. Transient absorption decay of 2 monitored at 610 nm with a photomultiplier tube in
anhydrous and deaerated toluene exciting at 470 nm. The lifetime is 2.4 ns.
S19
Figure S32. Calculated HOMO and LUMO Frontier orbitals of 1 in hexane.
Figure S33. Calculated HOMO and LUMO Frontier orbitals of 2 in hexane.
S20
Figure S34. Calculated molecular orbitals of 2 in hexane.
Figure S35. Calculated HOMO and LUMO energy levels of 2 in different solvents.
S21
Table S2. TD-DFT calculations including solvation effects of 1 and 2 in hexane.
1
2
E (nm)
OSa
E (nm)
S1
635
0.2707
732
(HOMO–LUMO)
(HOMO–LUMO)
S2
413
0.2052
582
(HOMO–
(HOMO–LUMO+1)
LUMO+1)
S3
383
0.1801
413
(HOMO-1 –
(HOMO-1 – LUMO)
LUMO)
S4
365
0.0020
392
S5
322
0.0003
357
S6
301
0.2148
347
a
Oscillator strength corresponds to the strength of the transition.
OSa
0.3512
0.0835
0.2618
0.0004
0.0004
0.0167
Optimized B3LYP/6-31G(d) ground-state Cartesian coordinates of 1.
S 16.0 -0.55063498 3.11478090 -0.57867098
N 7.0 0.71806502 2.09505200 -0.38236600
N 7.0 -1.79000998 2.05811810 -0.37386000
C 6.0 0.21398699 0.87724501 -0.14140999
C 6.0 -1.24547899 0.85595900 -0.13961300
C 6.0 -1.96978700 -0.37016299 0.05677800
C 6.0 -1.18701005 -1.49690199 0.23876899
C 6.0 0.23274100 -1.47525406 0.24763800
C 6.0 0.98429698 -0.32495901 0.06322400
C 6.0 -3.44793510 -0.44228601 0.06361900
C 6.0 -4.10345888 -1.56242895 -0.48639399
C 6.0 -5.48894596 -1.67626202 -0.45795199
C 6.0 -6.26304817 -0.65732801 0.12468300
C 6.0 -5.62511778 0.47117999 0.66978502
C 6.0 -4.23875713 0.57513601 0.63351500
C 6.0 2.45831108 -0.34868801 0.06667900
C 6.0 3.15926909 -1.46569705 -0.42878899
C 6.0 4.54630613 -1.53934896 -0.40661600
C 6.0 5.32617807 -0.48787099 0.13796400
C 6.0 4.62371683 0.64485902 0.62071401
C 6.0 3.23614192 0.70760298 0.57956600
H 1.0 -1.67385697 -2.44996500 0.42668599
H 1.0 0.74647301 -2.41110492 0.44607800
H 1.0 -3.52134991 -2.34428501 -0.96504903
H 1.0 -5.97608185 -2.54311895 -0.89374602
H 1.0 -6.21881580 1.26010597 1.12122595
H 1.0 -3.76216602 1.45140505 1.05622005
H 1.0 2.60885906 -2.28865194 -0.87770402
S22
H
H
H
C
N
N
C
C
H
H
H
H
H
H
1.0 5.02274609 -2.41627312 -0.82860702
1.0 5.16289902 1.48884201 1.03452599
1.0 2.74716997 1.59595096 0.96277899
6.0 -7.69182587 -0.76667702 0.15751800
7.0 -8.85267830 -0.85794997 0.18544801
7.0 6.70549393 -0.56529200 0.19751000
6.0 7.47710800 0.60853201 0.58174902
6.0 7.39631414 -1.65738106 -0.47323599
1.0 7.06853390 -2.62844205 -0.08387100
1.0 7.23614788 -1.65064394 -1.56327200
1.0 8.46757603 -1.57061803 -0.28374299
1.0 8.53659725 0.34748900 0.59941000
1.0 7.33877707 1.44972706 -0.11585700
1.0 7.20253420 0.94796902 1.58739805
Optimized B3LYP/6-31G(d) ground-state Cartesian coordinates of 2.
S 16.0 -0.10739800 3.14883995 -0.63473499
N 7.0 1.14594495 2.11385703 -0.42291600
N 7.0 -1.36171401 2.11194897 -0.42010701
C 6.0 0.62457103 0.90641397 -0.16768700
C 6.0 -0.83482498 0.90547502 -0.16927999
C 6.0 -1.57626700 -0.30873799 0.03866800
C 6.0 -0.80856800 -1.44474602 0.23374499
C 6.0 0.61023599 -1.44231498 0.24772500
C 6.0 1.37839198 -0.30366901 0.05368600
C 6.0 -3.05367589 -0.36125001 0.04745500
C 6.0 -3.72453904 -1.48963904 -0.47038400
C 6.0 -5.11100388 -1.58546400 -0.44023600
C 6.0 -5.84608889 -0.53479499 0.11284300
C 6.0 -5.21850300 0.60194403 0.62694699
C 6.0 -3.83095908 0.68454498 0.58723700
C 6.0 2.85088396 -0.34665099 0.06446000
C 6.0 3.53944206 -1.48309898 -0.40482101
C 6.0 4.92484903 -1.57425904 -0.37522599
C 6.0 5.71625996 -0.52151000 0.15109500
C 6.0 5.02665186 0.62972403 0.60902798
C 6.0 3.64061093 0.70981097 0.55979002
H 1.0 -1.30817604 -2.38912892 0.43108699
H 1.0 1.11012697 -2.38265395 0.45928499
H 1.0 -3.15387702 -2.29228997 -0.92713600
H 1.0 -5.62247181 -2.44974804 -0.84669101
H 1.0 -5.81297588 1.40172100 1.05208600
H 1.0 -3.34287810 1.56601405 0.98425102
H 1.0 2.98057795 -2.30786896 -0.83956301
H 1.0 5.39195824 -2.46561694 -0.77697301
H 1.0 5.57535887 1.47415805 1.00925195
S23
H
N
C
C
H
H
H
H
H
H
N
O
O
1.0 3.16166806
7.0 7.09273005
6.0 7.87906790
6.0 7.77268219
1.0 7.43377113
1.0 7.61357212
1.0 8.84460354
1.0 8.93491840
1.0 7.75362396
1.0 7.60598993
7.0 -7.30675697
8.0 -7.83836508
8.0 -7.93590593
1.61162198
-0.61454201
0.54870099
-1.73923504
-2.69161606
-1.77151704
-1.65642500
0.27394199
1.39021397
0.89346802
-0.62546599
-1.64077199
0.31655100
0.92350203
0.21549000
0.60179901
-0.41092300
0.01426100
-1.50032496
-0.22408500
0.62204403
-0.09733400
1.60637295
0.14946000
-0.31202301
0.64161098
S24