Problem 3.1 Ê ∂Cv ˆ = 0 for an ideal gas, etc. Show that Ë ∂V ¯T Since Cv = È ∂ Ê ∂U ˆ ˘ Ê ∂Cv ˆ Ê ∂U ˆ , then: Ë ∂V ¯ = ÍV Ë ∂T ¯ ˙ Ë ∂T ¯V T Î V ˚T Since U is a state function ( dU is an exact differential), the mixed partial derivatives are equal, hence: È ∂ Ê ∂U ˆ ˘ È ∂ Ê ∂U ˆ ˘ = ÍÎV Ë ∂T ¯ V ˙˚ Í T Ë ∂V ¯T ˙˚ T Î V For an ideal gas, Ê ∂U ˆ = 0 (U = U(T) only, remember the Joule experiment), so that Ë ∂V ¯T Ê ∂Cv ˆ = 0 for an ideal gas. Ë ∂V ¯T For other equations of state, we need a relation for this derivative in terms of state variables, i.e., Ê ∂U ˆ Ê ∂P ˆ =T - P , which will be derived later in Chapter 4. See the Ë ∂V ¯T Ë ∂T ¯V next few pages for parts 3.1(a)-(c) using this relation.
© Copyright 2026 Paperzz