Ch 7 and 17 1. Regression Analysis with Qualitative Information (independent variable) 2. Limited Dependent Variable Model and Sample Selection Corrections (dependent variable) Part I. A Regression Analysis with Qualitative Information y 1 2 xt u x is not quantitative * Dummy Variables 1. A dummy variable is a variable that takes on the value 1 or 0 2. Examples: (1) male = 1 if are male, 0 otherwise), (2) south = 1 if in the south, 0 otherwise), etc. 3. Dummy variables are also called binary variables,. 1 ex: W 1 2 X 1G 2 E u G 1 0 E 1 0 male otherwise college otherwise Other specifications including interactions: W 0 2 X XG 2 E u (interactions) W 0 2 X XG 2 E 3 XE u (interactions) W 0 2 X XG 2 E 3 XE 4GE u (interactions) W 1 2 X 1G 2 E 3GXE u (interactions) * Dummy Variable Trap W 0 2 X G u (one catogory only one dummy variable) W 0 1 X 1G1 2G2 u (False) G1 1 ( M ) G2 0 ( M ) 0 (F ) 1 (F) G1 G2 1 perfect collinearity. (since the variable of 0 is 1) ex: 2 W x0 x1 G1 G2 * 1 * 0 1 * 1 * 1 0 =﹥ G1 + G2 =1 2 Remedy :without intercept ( 0 ),but R is not correct or negative. W 0 1 x G u 1 G 0 M F E W G 1 0 1 x E W G 0 0 1 x base group H0 : 0 y 0 2 x D1997 H0 : 0 1 before 1997 D 0 after 1997 E y D1997 1 0 2 x ( if 0) E y D1997 0 0 2 x y A (after 1997) B (before 1997) 0 x 3 =﹥A structural change * The Chow Test (detecting a change in structure) 1. Turns out you can compute the proper F statistic without running the unrestricted model with interactions with all k continuous variables 2. If run the restricted model for group one and get SSR1, then for group two and get SSR2. 3. Run the restricted model for all to get SSR, then SSE SSE1 SSE2 n 2 k 1 F SSE1 SSE2 k 1 ex: B y 0 1 X e1 (unrestricted ) SSE uB A y 0 1 X e2 (unrestricted ) SSE uA y 0 1 X e3 ( restricted ) SSE R H 0 : 0 0 , 1 1 F SSE R SSEuA SSEuB q SSE A u SSEuB n k 1 4 (text:P.286) Note: nW 0 1 X 1 G 1 M G 0 F G=1 E( nWM ) 0 1 X 1 E(WM )=e 0 1 X1 G=0 E( nWM ) 0 1 X 1 E(WF )=e 0 1 X1 E(WM )-E(WF ) e 0 1 X1 -e 0 1 X1 = E(WF ) e 0 1 X1 E(WM )-E(WF ) =e 1 E(WF ) 5 Part II. Limited Dependent Variable Model and Sample Selection Corrections Linear form: (E(y) or Probability (p)) is a linear function of regressors, say x) 1. LPM (Linear Probability Model) Nonlinear form: (E(y) or Probability (p))is a nonlinear function of regressors, say x) 2. Probit 3. Logit 4. Truncated Variable (Tobit model) 5. The Poisson Regression Model (Count data variable) The dependent variable y is a dichotomous variable (dummy variables) taking the value 1 or zero. 6 1 if the person is employed y 0 otherwise 1 if the firm is bankrupt y 0 otherwise yi 1 2 x i , i 1, 2, , n (1) E ( i ) 0 , Cov( i , j ) 0 , i j E ( yi ) 1 fi 1 0 fi 0 fi 1 the probability of y=1 , success p= E ( yi ) 1 2 xi Probability that the event will occur given the xi * E( x) x f x x1 f x1 xn f xn * f yi p yi q1 yi p yi 1 p 1 yi E y i * x 2 pdf for yi (one unit change in xi on the probability that yi 1 where 0 E ( yi ) 1 0 1 2 x 1 7 yi 1 2 x i , i 1, 2, , n yˆ b1 b2 x (1) from 1 i yi 1 2 x f i yi 1 i 1 1 2 x yi 0 i 1 2 x pi 1 pi E ( i ) 0 1 1 2 x pi 1 2 x 1 pi 0 pi 1 2 x V i E i E i 2 E ( i 2 ) 1 1 2 x 1 2 x 1 2 x 1 1 2 x 1 2 x 1 1 2 x E ( yi ) 1 E ( yi ) V i E ( yi ) 1 E ( yi ) , i 1, 2, , n V 1 2 x V 1 E ( y1 ) 1 E ( y1 ) V 2 E ( y2 ) 1 E ( y2 ) V i is heteroscedastic. 2 2 Possible Solution: 8 yi 1 2 x i yi E yi 1 E yi yi* 1 1 2 xi i E yi 1 E yi 1 E yi 1 E yi 2 xi E yi 1 E yi i E yi 1 E yi yi* 1 x0* 2 x1* i* Note: Drawback Potential problem can be outside [0, 1]. A better solution is to re-specify, or transform the regression model itself to constrain the probability outcome. This is one justification for development of Probit and Logit models of binary. The Probit Model The latent (index) variable approach: An alternative (and more common) approach to specification of discrete choice models is the latent variable approach, where it is assumed that there is some underlying (and unobserved) latent 9 propensity variable y* where y* (-,) . U * 0 + xi 1i 1i 1 U * 0 +0 xi 2i 2i y* U * U * i 1i 2i yi 1 0 if U * U * 1i 2i if U * U * 1i 2i where U* is state-specific utilities Therefore, the model is the following yi* 0 +1xi i yi 1 0 if yi* 0 if yi* 0 Ex: 1. y→ the observed dummy is whether or not the person is employed y*→ propensity or ability to find employed 2. 10 y→ the observed dummy variable is whether or not the person has bought a car y*→ desire or ability to buy a car. 3. Boczar (1978, J. of Finance) bank Personal loan debtor Financial company yi 1 0 if yi* 0 if yi* 0 obtain a credit from bank obtain a credit from financial company f y p yi (1 p )1 yi i ~ f ( i ) logistic distribution e i 1 pdf : f ( i ) , cdf: F( ) i i (1 e i ) 2 1 e i i ~ f ( i ) s tan dard normal distribution probit model pdf: f ( i ) 1 12 i e , i ~ N (0,1) , i 2 11 * Likelihood Function (LF) (text: p.584) yi* 1 2 x i 1 if yi* 0 yi 0 otherwise pi p ( yi 1) p ( yi* 0) p ( 1 2 xi i 0) p ( i ( 1 2 xi )) 1 F ( ( 1 2 xi )) F ( 1 2 xi ) Where F is the cumulative probability function (CDF) of F ( ) 1 2 xi i f ( ) d f yi p yi 1 p 1 yi , yi 0,1 , i 1, 2,..., n f yi F ( 1 2 xi ) i 1 F ( 1 2 xi ) 1 yi y 12 LF f y1 f y2 f yn LF F ( 1 2 x1 )1 1 F ( 1 2 x1 ) 0 F ( x ) 1 F ( x ) F ( x ) 1 F ( x ) 1 1 0 2 p 1 2 p 0 1 1 2 p+1 1 2 P+1 F ( 1 2 xn ) 1 F ( 1 2 xn ) 0 1 F ( 1 2 xi ) 1- F ( 1 2 xi ) yi =1 yi =0 LLF F ( 1 2 xi ) 1 F ( 1 2 xi ) yi =1 yi =0 MLE Using numerical method to find b1 x0 x1 MLE 、 b2 x2 13 E yi 1 pi F ( 1 2 xi ) pˆ i F (b1MLE b2MLE xi ) pi ( 1 2 xi ) f ( 1 2 xi ) f ( 1 2 xi ) 2 xi xi In this model we can examine the effect of one unit change of xi on the probability that yi 1 Comparing the results of LPM、Probit and Logit models =﹥can not directly compare Linear Probability Model (LPM) yi 1 2 xi i E ( yi ) 1 2 xi b2MLE (estimating from probit and log it mod els) and b2OLS (estimating from LPM) 14 Probit and Logit models : pi ( 1 2 xi ) f ( 1 2 xi ) xi xi f ( 1 2 xi ) 2 b2 f (b1 b2 xi ) n b2 f (b b x ) 1 i 1 2 1 n LPM : yi 1 2 xi i E ( yi ) 1 2 xi = p E y i x i xi 2 b2 ex: Financial Distress Model: yi* →propensity to bankruptcy of company 1 bank ruptcy yi 0 no pi →the probability of company bankruptcy 15 ex: Predicted value yi* 1 2 x1 3 x2 pi F 1 2 x1 3 x2 pˆ i F b1MLE b2MLE x1 b3MLE x2 * Truncated Variable (text:P.595) Tobit Model (J.Tobin 1958/Econometrica vol. 26. pp.24-36) 1 2 x for those working Hi for those not working 0 yi* 1 2 x i yi* 1 2 xi i if yi* 0 yi if yi* 0 0 lim ited var iable yi cut off censored i ~ N 0, 2 Note that we have two sets of observations 16 * (1) The probability of yi 0 pi ( yi 0) pi ( yi* 0) pi 1 2 xi i 0 pi i 1 2 xi 1 2 xi pi i 2 xi F 1 2 xi 1 F 1 1 2 xi 1 2 xi 0 * (2) The probability of yi 0 p ( yi* 0) p ( yi yi* ) p yi 1 2 xi i p i yi 1 2 xi y 1 2 xi p i i 17 1 e 2 1 y 1 2 xi i 2 2 1 2 xi LF 1 F 1 e 2 n1 n0 let n0 * denote the number of yi 0 n1 * denote the number of yi 0 1 y 1 2 xi i 2 x LLF 1 F 1 2 1 i 1 50 MLE Find b1 MLE and b2 yi 1 2 xi i E yi xi 2 b2OLS E yi xi xi E yi xi xi * 2 xi 2 F 1 b MLE b2MLE xi b2MLE F 1 ˆ b1MLE b2MLE xi F ˆ b1 b2 xi F b1 b2 x using F or ˆ n 18 (text:P.599) 2 * The Poisson Regression Model (Count data variable) (text:P.604) e yi p ( y yi ) yi ! yi 0,1, , , E yi e 1 2 xi yi E yi + i yi e 1 2 xi i joint pdf e y1 e y2 LF y1 ! y2 ! e yn yn ! LLF y1 n ny1 ! y2 n ny2 ! n i 1 yi 1 2 xi e 1 2 xi nyi ! 19 MLE Find b1 MLE and b2 E ( yi ) e 1 2 xi 2 xi * eb1 b2 xi e =﹥Comparing b1 b2 xi n b2MLE e 1 2 xi or eb1 b2 x and 20 b2OLS .
© Copyright 2026 Paperzz