HEURISTICS FOR DYNAMIC SCHEDULING OF MULTI-CLASS BASE-STOCK CONTROLLED SYSTEMS Bora KAT and Zeynep Müge AVŞAR Department of Industrial Engineering Middle East Technical University Ankara TURKEY 1 OUTLINE Two-class base-stock controlled systems Related work in the literature Analysis Model to maximize aggregate fill rate Solution approach Structure of the optimal dynamic (state-dependent) scheduling policy Heuristics to approximate the optimal policy Numerical Results Symmetric case (equal demand rates) Asymmetric case Optimality of the policy to minimize inventory investment subject to aggregate fill rate constraint to maximize aggregate fill rate under budget constraint Conclusion and future work 2 SYSTEM CHARACTERISTICS Single facility to process items Exponential service times Poisson demand arrivals No set-up time Backordering case Preemption allowed Each item has its own queue managed by base-stock policies Performance measure: aggregate fill rate over infinite horizon 3 TWO-CLASS BASE-STOCK CONTROLLED SYSTEM 1 ni : items of type i in process ni : items of type i in stock k i : backorders of type i S i : base-stock level for type i i : demand rate for type i : service rate ni ni Si ki for i 1, 2 2 4 RELATED WORK IN THE LITERATURE •Zheng and Zipkin, 1990. A queuing model to analyze the value of centralized inventory information. •Ha, 1997. Optimal dynamic scheduling policy for a make-to-stock production system. •van Houtum, Adan and van der Wal, 1997. The symmetric longest queue system. •Pena-Perez and Zipkin, 1997. Dynamic scheduling rules for a multi-product make-to-stock queue. •Veatch and Wein, 1996. Scheduling a make-to-stock queue: Index policies and hedging points. •de Vericourt, Karaesmen and Dallery, 2000. Dynamic scheduling in a make-to-stock system: A partial charact. of optimal policies. •Wein, 1992. Dynamic scheduling of a multi-class make-to-stock queue. •Zipkin, 1995. Perf. analysis of a multi-item production-inventory system under alternative policies. •Bertsimas and Paschalidis, 2001. Probabilistic service level guarantees in make-to-stock manufacturing systems. •Glasserman, 1996. Allocating production capacity among multiple products. 5 •Veatch and de Vericourt, 2003. Zero Inventory Policy for a Two-Part-Type Make-To-Stock Production System. RELATED WORK IN THE LITERATURE Zheng and Zipkin, 1990. A queuing model to analyze the value of centralized inventory information. • symmetric case: identical demand (Poisson) and service (exponential) rates, identical inventory holding and backordering costs • base-stock policy employed, preemption allowed • main results on the LQ (longest queue) system • closed form steady-state distribution of the difference between the two queue lengths • closed form formulas for the first two moments of the marginal queue lengths • a recursive scheme to calculate joint and marginal distributions of the queue lengths • it is analytically shown that LQ is better than FCFS discipline under the long-run average payoff criterion • alternative policy: specify (2S-1) as the maximum total inventory to stop producing imposing a maximum of S on each individual inventory • -policy as an extension of LQ for the asymmetric case, extension of the recursive scheme to calculate steady-state probabilities 6 RELATED WORK IN THE LITERATURE Ha, 1997. Optimal dynamic scheduling policy for a make-to-stock production system. • two item types allowing preemption, demand (Poisson) and service (exponential) rates, and inventory holding and backordering costs to be different • perf. criterion: expected discounted cost over infinite horizon • equal service rates: characterizing the optimal policy by two switching curves (base-stock policy, together with a switching curve, for a subset of initial inv. levels) • different service rates: optimal to process the item with the larger index when both types are backordered • heuristics: static priority () rule dynamic priority ( modified and switching) rules 7 RELATED WORK IN THE LITERATURE van Houtum et al., 1997. The symmetric longest queue system. • symmetric multi-item case: identical demand (Poisson) and service (exponential) rates, base-stock policy employed, not preemptive • performance measure is fill rate (the cost formulation used is the same) • investigating (approximating) the performance of the LQ policy with two variants: threshold rejection and threshold addition (to find bounds) 8 MODEL total cost long - run 1 length of time horizon cost : : c(n1 , n2 ) w11n1 S1 w21n2 S2 f m n1 , n2 cn1 , n2 weigh ted average of fill rates weight : wi i ? 1 2 1 f m 1 n1 1, n2 2 f m 1 n1 , n2 1 min f m 1 n1 1, n2 , f m 1 n1 , n2 1 f 0 n1 , n2 0 where 1 2 1. 9 SOLUTION APPROACH • Value iteration n2 to solve for long-run avg. payoff N+m 1 lim f m n1 , n2 f m 1 n1 , n2 m N+m-1 weighted average of fill rates • No truncation f 0 n1 , n2 0 for (n1 , n2 ) 0,1,..., N m 2 f1 n1 , n2 for (n1 , n2 ) 0,1,..., N m 1 2 N f m n1 , n2 for (n1 , n2 ) 0,1,..., N 2 N N+m-1 N+m 10 n1 OPTIMAL SCHEDULING POLICY: Symmetric, Finite-Horizon Case n2 n2 S2 S2 S1 n1 n2 n2 S2 S2 S1 n1 S1 n1 S1 n1 11 OPTIMAL SCHEDULING POLICY: Symmetric, Infinite-Horizon Case n2 process type 1 A(n1) process type 2 S2 B(n1) S1 n1 12 OPTIMAL SCHEDULING POLICY: Symmetric Case n2 n2 A(n1) PROCESS TYPE 1 A(n1) PROCESS TYPE 1 PROCESS TYPE 2 S2 PROCESS TYPE 2 B(n1) PROCESS TYPE 1 S1 PROCESS TYPE 2 S2 PROCESS TYPE 2 PROCESS TYPE 1 n1 r0.4, S1=S2=9 S1 B(n1) n1 r0.9, S1=S2=9 13 STRUCTURE OF THE OPTIMAL POLICY: Symmetric Case Cost: c(n1,n2) n2 n2 SQ S2 w2 1 0 w1 S2 B(n1) LQ S1 n1 S1 n1 14 STRUCTURE OF THE OPTIMAL POLICY: Symmetric Case n2 Region I n1 S1 and n2 S 2 none in stockout LQ to avoid stockout for the item with higher risk IV III I II S2 Region II n1 S1 and n2 S 2 type 1 in stockout B(n1): threshold to be away from region III and to reach region I Region III n1 S1 and n2 S 2 both types in stockout SQ to eliminate stockout for more promising type S1 n1 S1 n1 n2 S2 Region IV n1 S1 and n2 S 2 type 2 in stockout B(n1): threshold to be away from region III and to reach region I 15 HEURISTICS TO APPROXIMATE OPTIMAL POLICY: Symmetric Case (to approximate curve B) Heuristic 1 n1 S1 1 S 2 n2 1 2 n2 process type 1 process type 2 Heuristic 2 SQ n1 S1 1 S 2 n2 2 process type 1 process type 2 S2 S2-n2 Best performance by heuristic 2. LQ n1-(S1-1) S1 (n1,n2) n1 Heuristics 1 and 2 perform almost equally well. 16 HEURISTICS TO APPROXIMATE OPTIMAL POLICY: Symmetric Case n2 n2 n2 SQ SQ S2 SQ 2S S2 LQ LQ LQ S1 n1 Heuristic 3 S1 Heuristic 4 2S n1 n1 Heuristic 5 steady-state probability distribution performs better than heuristics 3 and 4 by Zheng-Zipkin’s algorithm in LQ region for large r. and then proceeding recursively in SQ region. 17 NUMERICAL RESULTS: Symmetric Case Fill Rate (%) S r 0.7 0.8 0.9 Optimal LQ FCFS Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 Optimal LQ FCFS Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 Optimal LQ FCFS Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 1 53.72 43.81 46.15 53.72 53.72 53.72 53.72 53.72 44.97 30.81 33.33 44.97 44.97 44.97 44.97 44.97 35.46 16.23 18.18 35.46 35.46 35.46 35.46 35.46 2 76.26 70.25 71.01 76.06 76.26 75.03 74.68 76.06 66.00 53.95 55.56 65.92 66.00 62.94 64.74 65.92 53.20 31.12 33.06 53.20 53.17 46.65 52.48 53.20 3 87.73 84.70 84.39 87.60 87.72 87.03 85.11 87.43 78.14 69.88 70.37 77.95 78.14 75.62 75.57 77.95 63.86 43.80 45.23 63.79 63.74 56.36 62.11 63.79 4 93.75 92.26 91.59 93.67 93.74 93.40 91.09 93.48 85.86 80.48 80.25 85.69 85.85 84.15 82.52 85.57 71.24 54.31 55.19 71.08 71.13 64.48 68.50 71.08 6 98.43 98.07 97.56 98.40 98.43 98.35 96.89 98.31 94.12 91.91 91.22 93.98 94.12 93.41 90.94 93.83 81.26 69.93 70.00 80.97 81.19 76.61 77.24 80.90 8 99.61 99.53 99.29 99.61 99.61 99.59 98.98 99.57 97.58 96.67 96.10 97.49 97.58 97.29 95.41 97.39 87.71 80.26 79.92 87.37 87.66 84.64 83.38 87.25 11 99.95 99.94 99.89 99.95 99.95 99.95 99.83 99.95 99.36 99.13 98.84 99.34 99.36 99.29 98.43 99.29 93.47 89.50 89.00 93.17 93.44 91.83 89.74 93.05 15 100.00 100.00 99.99 100.00 100.00 100.00 99.99 100.00 99.89 99.85 99.77 99.89 99.89 99.88 99.65 99.88 97.19 95.48 95.07 97.01 97.17 96.48 94.72 96.92 18 r 0.90 Fill Rate (%) NUMERICAL RESULTS: Symmetric Case 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 Optimal LQ FCFS Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 1 2 3 4 6 8 11 15 S 19 r 0.90 NUMERICAL RESULTS: Symmetric Case 100.00 Optimal Fill Rate (%) 90.00 80.00 LQ 70.00 FCFS 60.00 Heuristic 1 50.00 Heuristic 2 40.00 30.00 Heuristic 3 20.00 Heuristic 4 10.00 Heuristic 5 0.00 1 2 3 4 6 8 11 15 S 20 THREE TYPES OF ITEMS: Symmetric Case S Fill Rate (%), r=0.75 LQ FCFS 1 2 3 4 6 8 11 50.000 75.000 87.500 93.750 98.438 99.609 99.951 S Fill Rate (%), r=0.90 LQ FCFS 1 2 3 4 6 8 11 25.000 43.750 57.813 68.359 82.202 89.989 95.776 46.323 74.281 88.324 94.849 99.037 99.824 99.986 21.359 40.856 56.293 67.943 82.901 90.906 96.460 46.366 74.322 88.354 94.873 99.048 99.828 99.987 21.421 40.955 56.406 68.049 82.987 90.975 96.519 Heuristic 2 60.735 81.520 91.476 96.199 99.282 99.870 99.990 60.752 81.546 91.497 96.216 99.294 99.873 99.991 Heuristic 2 47.887 66.429 76.568 83.138 91.045 95.249 98.147 47.920 66.460 76.600 83.186 91.097 95.278 98.171 Simulation results for LQ policy and Heuristic 2 21 1 22 w1 w2 THE OPTIMAL SCHEDULING POLICY: Asymmetric Case n2 n2 A(n1) A(n1) PROCESS TYPE 1 PROCESS TYPE 1 PROCESS TYPE 2 PROCESS S2 TYPE 2 PROCESS TYPE 2 PROCESS S2 TYPE 2 B(n1) PROCESS TYPE 1 S1 PROCESS TYPE 1 n1 r0.4, S1=S2=8 B(n1) S1 n1 r0.9, S1=S2=8 22 HEURISTIC 1 TO APPROXIMATE OPTIMAL POLICY: Asymmetric Case (to approximate curves A and B) 1 2 w1 w2 Region I n2 IV III n1-(S1-1) S1 n1 1 (n1,n2) S 2 n2 2 process type 1 process type 2 n1 S1 1 S 2 n2 1 2 process type 1 Region II n2-(S2-1) process type 2 S2 S2-n2 (n1,n2) S1-n1 Region III S2-n2 I n1-(S1-1) S1 (n1,n2) II n1 n1 S1 1 n2 S 2 1 process type 1 1 2 Curve A approximated for regions I and III is the diagonal when 1=2. process type 2 23 HEURISTIC 2 TO APPROXIMATE OPTIMAL POLICY: Asymmetric Case 1 2 w1 w2 Region I n2 IV III n1-(S1-1) S1 n1 1 (n1,n2) S 2 n2 2 process type 1 process type 2 Region II n2-(S2-1) n1 S1 1 S 2 n2 2 process type 1 process type 2 S2 S2-n2 (n1,n2) S1-n1 Region III S2-n2 I n1-(S1-1) S1 (n1,n2) II n1 n1 S1 1 n2 S 2 1 process type 1 1 2 process type 2 24 1 22 w1 w2 NUMERICAL RESULTS: Asymmetric Case Fill Rate (%) S r 1 2 2 Optimal FCFS Heuristic Heuristic 0.7 Delta 1 Delta 2 Delta 3 Delta 5 Delta 8 Optimal FCFS Heuristic Heuristic 0.8 Delta 1 Delta 2 Delta 3 Delta 5 Delta 8 Optimal FCFS Heuristic Heuristic 0.9 Delta 1 Delta 2 Delta 3 Delta 5 Delta 8 1 2 1 2 1 2 1 2 3 4 6 8 11 15 56.21 47.69 56.16 56.16 45.11 46.77 47.77 48.78 49.31 48.76 35.06 48.72 48.72 32.05 33.86 35.16 36.83 38.12 41.12 19.64 41.07 41.07 17.07 18.48 19.64 21.48 23.45 77.12 71.90 77.00 76.90 70.09 70.19 71.14 72.12 72.66 67.89 57.23 67.65 67.54 53.97 54.49 55.99 57.96 59.52 56.93 35.14 56.76 56.45 31.26 32.00 33.59 36.16 38.97 87.94 84.54 87.71 87.71 84.38 83.64 83.47 84.18 84.58 78.93 71.44 78.51 78.54 69.68 69.05 69.29 71.04 72.44 65.78 47.42 65.31 65.20 43.77 43.57 44.30 47.02 50.02 93.72 91.30 93.57 93.60 91.99 91.46 90.77 90.72 90.98 86.17 80.68 85.81 85.93 80.26 79.63 78.91 79.51 80.63 72.25 57.19 71.54 71.78 54.23 53.85 53.61 55.40 58.27 98.37 97.11 98.31 98.32 97.94 97.81 97.52 96.74 96.62 94.19 90.86 93.93 94.06 91.74 91.47 90.93 89.55 89.71 81.72 71.27 80.88 81.40 69.83 69.55 69.06 68.09 69.76 99.59 98.99 99.57 99.58 99.48 99.45 99.38 99.09 98.62 97.60 95.52 97.46 97.54 96.57 96.48 96.24 95.37 94.16 88.00 80.43 87.22 87.78 80.17 80.01 79.65 78.49 77.35 99.95 99.78 99.95 99.95 99.93 99.93 99.92 99.88 99.75 99.37 98.39 99.33 99.35 99.09 99.07 99.01 98.75 98.02 93.64 88.71 93.07 93.51 89.44 89.37 89.19 88.48 86.72 100.00 99.97 100.00 100.00 100.00 100.00 100.00 99.99 99.98 99.90 99.57 99.89 99.89 99.85 99.84 99.83 99.79 99.65 97.27 94.38 96.96 97.21 95.45 95.43 95.35 95.04 94.17 n2 0. 1 0 0. S2 S1 n1 Instead of LQ policy, delta policy (Zheng-Zipkin): for 1>2, process type 2 when n2-n1>. 25 1 22 w1 w2 NUMERICAL RESULTS: Asymmetric Case Fill Rates (%) 100.00 optimal 80.00 fcfs 60.00 h1 40.00 h2 20.00 delta3 0.00 1 2 3 4 6 8 11 15 S 26 1 22 w1 w2 NUMERICAL RESULTS: Asymmetric Case Fill Rates (%) 100.00 optimal 80.00 fcfs 60.00 h1 40.00 h2 20.00 delta3 0.00 1 2 3 4 6 8 11 15 S 27 1 22 w1 w2 NUMERICAL RESULTS: Asymmetric Case Weighted Cost Function Fill Rate (%) r 0.7 0.8 0.9 S optimal FCFS h1 h1-mult h2 h2-mult delta1 delta2 delta3 delta5 delta8 optimal FCFS h1 h1-mult h2 h2-mult delta1 delta2 delta3 delta5 delta8 optimal FCFS h1 h1-mult h2 h2-mult delta1 delta2 delta3 delta5 delta8 1 51.66 44.84 51.54 50.98 51.54 50.98 40.08 41.18 41.84 42.52 42.87 42.69 32.47 42.50 41.80 42.50 41.80 28.03 29.24 30.11 31.22 32.08 32.95 17.86 32.73 32.22 32.74 32.22 14.72 15.65 16.43 17.65 18.97 2 74.98 68.92 74.41 74.71 74.52 74.92 66.37 65.81 66.44 67.10 67.46 64.62 53.85 63.39 64.46 63.36 64.52 50.30 50.02 51.02 52.33 53.37 52.01 32.27 48.98 51.79 49.29 52.01 28.66 28.70 29.76 31.47 33.34 3 86.96 82.17 86.63 86.86 86.66 86.95 82.18 80.86 80.25 80.73 80.99 77.84 68.14 76.67 77.75 76.71 77.84 66.99 65.53 65.08 66.25 67.18 64.79 43.95 60.70 64.42 61.30 64.78 41.44 40.40 40.37 42.18 44.18 4 93.26 89.63 92.98 93.09 93.00 93.15 90.77 89.92 88.80 88.44 88.61 85.89 77.80 84.99 85.74 85.04 85.80 78.40 77.18 75.71 75.62 76.37 73.24 53.47 69.59 72.82 70.10 73.21 52.25 51.14 49.96 50.68 52.59 n2 6 98.24 96.38 98.11 98.14 98.13 98.16 97.59 97.39 96.96 95.83 95.61 94.20 88.97 93.71 93.99 93.76 94.06 90.92 90.41 89.46 87.22 87.03 83.56 67.63 81.19 83.17 81.41 83.48 68.48 67.72 66.50 63.98 64.72 8 99.56 98.70 99.49 99.49 99.50 99.51 99.38 99.34 99.23 98.82 98.18 97.62 94.40 97.32 97.42 97.37 97.48 96.22 96.04 95.63 94.29 92.49 89.48 77.24 87.90 89.08 88.03 89.30 79.26 78.80 77.96 75.59 73.01 11 99.95 99.71 99.93 99.93 99.93 99.93 99.92 99.92 99.91 99.85 99.67 99.38 97.92 99.25 99.27 99.28 99.30 98.99 98.95 98.85 98.46 97.43 94.48 86.36 93.52 94.04 93.65 94.26 88.96 88.73 88.29 86.90 83.98 15 100.00 99.96 99.99 99.99 100.00 100.00 100.00 100.00 99.99 99.99 99.98 99.90 99.43 99.86 99.87 99.87 99.88 99.83 99.82 99.81 99.74 99.54 97.64 92.95 97.12 97.31 97.22 97.46 95.24 95.15 94.96 94.36 92.95 1 w2 S2 0 w1 S1 wi n1 i 1 2 Indices used for the heuristics are multiplied by the respective wi. Heur-mult: index1 is multiplied also by (1-r). (adjustment for high r) 28 I OPTIMAL POLICY for min ci Si i 1 I wi FRi (S1 ,..., S I ) , max wi FRi ( S1 ,..., S I ) i 1 i 1 I c S Budget i i i 1 I Minimum Base-Stock Levels to satisfy Target Fill Rate FCFS 0.90 0.95 0.99 r 0.25 0.50 0.60 0.75 0.90 0.95 0.25 0.50 0.60 0.75 0.90 0.95 0.25 0.50 0.60 0.75 0.90 0.95 S1 S2 2 3 3 5 12 24 2 3 4 6 15 30 3 5 6 10 23 47 1 2 3 5 11 23 2 3 4 6 15 30 3 4 6 9 23 46 FR(%) exp.inv. S1 91.837 1.347 2 92.593 2.037 3 92.128 2.309 3 92.224 3.617 5 90.001 7.450 12 90.470 14.905 23 97.959 1.837 2 96.296 2.519 3 96.626 3.275 4 95.334 4.570 6 95.071 10.722 15 95.034 20.972 30 99.708 2.834 3 99.177 4.004 4 99.380 5.255 6 99.194 8.012 9 99.010 18.545 23 99.046 37.091 46 LQ S2 1 2 3 4 11 23 2 3 4 6 15 29 3 4 5 9 22 45 FR(%) exp.inv. S1 91.807 1.346 2 92.936 2.030 2 92.681 2.296 3 90.259 3.127 4 90.502 7.405 9 90.284 14.399 18 98.085 1.836 2 96.741 2.513 3 97.167 3.267 4 95.990 4.552 6 95.482 10.693 13 95.006 20.462 24 99.755 2.834 3 99.052 3.504 4 99.258 4.754 5 99.278 7.509 8 99.065 18.040 20 99.033 36.090 40 Heuristic 2 S2 1 2 3 4 9 18 2 3 3 5 12 24 2 4 5 8 20 40 FR(%) 92.462 90.139 93.616 90.458 90.000 90.858 98.115 96.989 95.837 95.864 95.214 95.075 99.025 99.113 99.042 99.007 99.014 99.073 exp.inv. 1.346 1.562 2.313 2.745 5.545 10.844 1.836 2.517 2.789 4.108 8.533 15.850 2.335 3.505 4.259 6.526 15.617 30.810 Heuristic 3 S1 S2 2 2 3 5 11 21 2 3 4 6 14 27 3 4 5 9 21 43 1 2 3 4 10 21 2 3 3 5 13 27 2 4 5 8 21 43 FR(%) 92.462 90.070 93.493 92.136 90.924 90.897 98.115 96.971 95.764 95.532 95.177 95.081 99.025 99.109 99.026 99.194 99.007 99.047 exp.inv. 1.346 1.555 2.304 3.138 6.523 12.632 1.836 2.516 2.784 4.078 9.278 18.112 2.335 3.504 4.257 7.014 16.557 33.619 Lower expected inventory levels under heuristic policies when r is not too small. 29 COMPARISON OF THE POLICIES in terms of fill rate, exp. backorders and inventories r=0.75 S Fill Rate (%) FCFS LQ Heur.2 Expected Backorders FCFS LQ Heur.2 1 2 3 4 6 8 11 15 0.40000 0.64000 0.78400 0.87040 0.95334 0.98320 0.99637 0.99953 0.90000 0.54000 0.32400 0.19440 0.06998 0.02519 0.00544 0.00071 0.37500 0.62813 0.78380 0.87589 0.95990 0.98720 0.99771 0.99977 0.49435 0.71433 0.83442 0.90458 0.96898 0.99007 0.99822 0.99982 0.87500 0.50312 0.28692 0.16281 0.05200 0.01652 0.00295 0.00030 0.99435 0.66484 0.40970 0.24512 0.08156 0.02632 0.00472 0.00047 Expected Inventory FCFS LQ Heur.2 0.40000 1.04000 1.82400 2.69440 4.56998 6.52519 9.50544 13.50071 0.37500 1.00313 1.78692 2.66281 4.55200 6.51652 9.50295 13.50030 0.49435 1.16484 1.90970 2.74512 4.58156 6.52632 9.50472 13.50047 r=0.90 S Fill Rate (%) FCFS LQ Heur.2 Expected Backorders FCFS LQ Heur.2 1 2 3 4 6 8 11 15 0.18182 0.33058 0.45229 0.55187 0.70002 0.79918 0.89001 0.95071 3.68182 3.01240 2.46469 2.01656 1.34993 0.90367 0.49495 0.22180 0.16227 0.31117 0.43797 0.54307 0.69933 0.80257 0.89505 0.95482 0.35459 0.53169 0.63745 0.71125 0.81191 0.87658 0.93436 0.97173 3.66223 2.97341 2.41139 1.95446 1.28298 0.84188 0.44743 0.19260 3.85455 3.35688 2.90969 2.50083 1.79612 1.25659 0.71384 0.32378 Expected Inventory FCFS LQ Heur.2 0.18182 0.51240 0.96469 1.51656 2.84993 4.40367 6.99495 10.72180 0.16227 0.47344 0.91141 1.45448 2.78299 4.34190 6.94744 10.69262 0.35459 0.85691 1.40970 2.00085 3.29614 4.75660 7.21385 10.82379 30 COMPARISON OF THE POLICIES in terms of fill rate, exp. backorders and inventories Fill Rate (%), r=0.90 Expected Backorders, r=0.90 1.00 0.95 0.90 0.85 0.80 0.75 0.70 4.00 3.00 FCFS LQ Heur.2 0.65 0.60 0.55 0.50 0.45 0.40 FCFS LQ Heur.2 2.00 1.00 0.35 0.30 0.00 1 2 3 4 6 8 11 1 15 2 3 4 6 8 11 15 S S Expected Inventory, r=0.90 11.00 10.00 9.00 8.00 FCFS LQ 7.00 6.00 5.00 Heur.2 4.00 3.00 2.00 1.00 0.00 1 2 3 4 6 8 11 15 S 31 MODEL TO INCORPORATE SET-UP TIME f g sf sg g : minimum cost while processing items of type 1 : minimum cost while processing items of type 2 : minimum cost while setting up the facility for type 1 : minimum cost while setting up the facility for type 2 : set-up rate f m n1 , n2 cn1 , n2 1 min f m 1 n1 1, n2 , sg m1 n1 1, n2 2 min f m 1 n1 , n2 1, sg m 1 n1 , n2 1 min f m 1 n1 1, n2 , sg m 1 n1 1, n2 g f m n1 , n2 32 CONCLUSION Summary multi-class base-stock controlled systems numerical investigation of the structure of the optimal policy for maximizing the weighted average of fill rates optimal policy for I min ci Si i 1 w FR ( S ,..., S ) i i 1 I i 1 I smaller (S1 ,..., S I ) than LQ (symmetric case), (asymmetric case), FCFS policies give smaller expected inventory when r is not too small accurate heuristics adapted for extensions: asymmetric case, more than two types of items disadvantage: not that easy to implement compared to LQ, and FCFS policies Future Work optimizing base-stock levels set-up time type-dependent processing time I min ci Si FRi ( S1 ,..., S I ) i i instead of working with aggregate fill rate i 1 how to determine the values of wi? I w FR (S ,..., S ) i 1 i i 33 1 I
© Copyright 2026 Paperzz