Answer to problem 2.1 Given : Air with a molar composition of 79%N2 and 21%O2 Find: The mass fraction of O2 and N2 in the air. Approach: This is a simple conversion problem using: MWmix=ΣxiMWi and Yi=xiMWi/MWmix Given the molar composition: x N 2 0.79 and xO2 0.21 mixture molecular weight: MWmix=ΣxiMWi= x N MW N xO MWO =0.79(28.013)+0.21(32)=28.85 kg/kmol 2 2 2 2 Mass fraction of O2 and N2: YO2 xO2 ( MWO2 MWmix YN 2 x N 2 ( MW N 2 MWmix ) 0.21( 32 ) 0.233 28.85 ) 0.79( 28.013 ) 0.767 28.85 Comments: Note that YO2 xO2 , since MWO2 MW mix and that ΣYi=1 as would be expected. Answer to problem 2.2 Given: The following mixture: Species # Moles CO 0.095 CO2 6 H 2O 7 N2 34 NO 0.005 Total 47.1 Find: a) The mole fraction, mole %, and ppm of NO in the mixture b) Determine the MW of the mixture c) Determine the mass fraction of each constituent. a) xi Ni N NO 0.005 N i N CO N CO2 N H 2O N N2 N NO 0.095 6 7 34 0.005 x NO 106 10 6 kmol / kmol mix =106 ppm mole %= xi 100 0.0106 % ppm= # NO/TOT#×106= N NO A 10 6 106 ppm N A i Where A≡Avogadro’s Number=6.0223×1026 molecules/kmol. b) MWmix=ΣxiMWi= xCO MWCO xCO2 MWCO2 x H 2O MW H 2O x N 2 MW N 2 x NO MW NO =0.002(28.010)+0.127(44.011)+0.149(18.016)+0.722(28.013)+106×10-6(30.026) =28.6 kg/kmol-mix where x CO , x CO 2 , x H 2O and x N 2 are found in the same manner as x NO was found. Species MWi MWmix c) Yi xi CO: CO2: H2O: N2: NO: xi CO 0.002 CO2 0.127 H 2O 0.149 N2 0.722 NO 106×10-6 Total 1.0 (kgi/kgmix) Y=0.002(28.01/28.6)=0.002 Y=0.127(44.011/28.6)=0.195 Y=0.149(18.016/28.6)=0.094 Y=0.722(28.013/28.6)=0.707 Y=106×10-6(30.006/28.6)=11110-6 Species Yi CO 0.002 CO2 0.195 H 2O 0.094 N2 0.707 NO 111×10-6 Total 1.0 Comments: Note that ppm=xi(1×106) and that used to check your calculations. Answer to problem 2.3 GIVEN:Mixture with 5 mole H2 and 3 mole O2. FIND: x H 2 , x O2 , MWmix , YH 2 , YO2 SOLUTION: a) xi Ni ; N tot xH2 5 0.625 53 xO2 1 x H 2 0.375 x i 1 and Y i 1 can often be b) MWmix=ΣxiMWi= x H 2 MW H 2 xO2 MWO2 =0.625(2.016)+0.375(31.999)=13.260 kg/kmol MWi MWmix Yi xi c) YH 2 0.625 2.016 0.095 13.26 YO2 1 YH 2 1 0.095 0.905 COMMENT: Even though the mole fraction of H2 is large, its low molecular weight results in its having a small mass fraction. Atp2.4 Given: O2-CH4 mixture at 300 K & 100 kPa, xO 0.2 2 FIND: YCH 4 , N CH 4 / Assumptions: ideal gas mixture. SOLUTION: a) YCH 4 xCH 4 = xCH 4 = 0.2 MWCH 4 MWmix MWCH 4 xCH 4 MWCH 4 (1 xCH 4 ) MWO2 16.043 0.2(16.043) 0.111 0.2(16.043) 0.8(31.999) 28.808 b) PCH 4 N CH 4 Ru T ; PCH 4 xCH 4 P N CH 4 / xCH P 4 Ru T (0.2)100 10 3 8.018 10 3 kmol / m 3 8315(300) COMMENT: Careful treatment of unit is required in part b. Atp2.5 GIVEN: N2-Ar mixture with N N 2 3 N Ar , T=500 K, P=250 kPa FIND: xi , MWmix , Yi , N N 2 / ASUMPTION: ideal gas mixture. SOLUTION: a) x N2 N N2 N mix 3N Ar 3 / 4 0.75 3N Ar N Ar x Ar 1 0.75 0.25 b) MWmix=ΣxiMWi=0.75(28.014)+0.25(39.948)= 30.998 c) YN 2 x N 2 MW N 2 / MWmix 0.75(28.014) / 30.998 0.678 YAr 1 YN 2 0.322 d) PN 2 N N 2 Ru T PN 2 x N 2 Ptot N N2 / x N 2 Ptot Ru T (0.75)250 10 3 0.0451kmol / m 3 8315(500) COMMENT: Careful treatment of unit is required in part d. Atp2-9 GIVEN: Propane (C3H8) burning at an air-fuel ratio (mass) of 18:1 FIND: The equivalence ratio, Φ ASSUMPTIONS: Air is comprised of 79% N2 and 21% O2 by volume APPROACH: Determine the stoichiometric A/F ratio and then the equivalence ratio Stoichiometric relation: C3 H 8 aO2 3.76aN 2 3CO2 4 H 2 O 3.76aN 2 a x Y /4 x=3, Y=8, Φ=1, a=5 A / F | Stoich 4.76a( MWair 28.85 ) 4.76(5) 15.6 MW fuel 44.096 equivalence ratio: A / F | STOICH 15.6 0.87 A / F | ACTUAL 18.0 COMMENT: Since Φ<1, this combustion process is fuel-lean. Also note thatΦ does not depend on whether the A/F ratio are expressed in terms of moles or mass since Φ is also a ratio. Atp2-10 GIVEN: An equivalence ratio of 0.6 FIND: The corresponding A/F ratios (mass) for methane (CH4), propane (C3H8) and decane (C10H22) ASSUMPTIONS: Air is comprised of 79% N2 and 21% O2 by volume APPROACH: Use the relationships: a x Y /4 and A / F | mass 4.76a( MWair ) MW fuel methane (CH4): x=1,Y=4, MW=16.043 kg/kmole a 1 4/ 4 3.33 0 .6 so, A / F | mass 4.76(3.33)( 28.85 ) 28.50kgair / kg fuel 16.043 propane (C3H8): x=3, Y=8,MW=44.096 kg/kmole a 3 8/ 4 8.33 0.6 so, A / F | mass 4.76(3.33)( 28.85 ) 25.94kgair / kg fuel 44.096 decane (C10H22): x=10, Y=22, MW=142.284 kg/kmole a 10 22 / 4 25.83 0.6 so, A / F | Mass 4.76(25.83)( 28.85 ) 24.93kgair / kg fuel 142.284 COMMENTS: Note how the A/F ratio (mass) changes only slightly from one hydrocarbon fuel to another. While the A/F ratio (molar) varies from 15.9 (methane) to 123 (decane). This difference in behavior is due to the MWfuel increasing as the molar A/F ratio increases. Atp2-12 GIVEN: 1 mole of alcohol (CxHyOz) undergoing complete combustion FIND: Stoichiometric balance equation and number of moles of air to burn 1 mole of alcohol. ASSUMPTIONS: no dissociation and air is comprised of 79% N2 and 21% O2 by volume APPROACH: Use conservation of elements for the combustion of one mole of alcohol. Stoichiometric balance: C x H y Oz aO2 3.76aN 2 bCO2 cH 2O 3.76aN 2 conservation of Carbon : x=b, so, b=x conservation of H : y=2c, so, c=y/2 conservation of O : z+2a=2b+c=2x+y/2, so, a=x+y/4-z/2 number of moles of air to burn 1 mole of alcohol: N air a 3.76a 4.76a N fuel 1 N air 4.76[ x y / 4 z / 2] N fuel COMMENTS: Note that stoichiometric combustion of an alcohol (CxHyOz) requires less oxygen than the combustion of a comparable hydrocarbon fuel (CxHy) due to the presence of oxygen in the fuel. Atp2-12 GIVEN: 1 mole of alcohol (CxHyOz) undergoing complete combustion FIND: Stoichiometric balance equation and number of moles of air to burn 1 mole of alcohol. ASSUMPTIONS: no dissociation and air is comprised of 79% N2 and 21% O2 by volume APPROACH: Use conservation of elements for the combustion of one mole of alcohol. Stoichiometric balance: C x H y Oz aO2 3.76aN 2 bCO2 cH 2O 3.76aN 2 conservation of Carbon : x=b, so, b=x conservation of H : y=2c, so, c=y/2 conservation of O : z+2a=2b+c=2x+y/2, so, a=x+y/4-z/2 number of moles of air to burn 1 mole of alcohol: N air a 3.76a 4.76a N fuel 1 N air 4.76[ x y / 4 z / 2] N fuel COMMENTS: Note that stoichiometric combustion of an alcohol (CxHyOz) requires less oxygen than the combustion of a comparable hydrocarbon fuel (CxHy) due to the presence of oxygen in the fuel. Atp2-14 GIVEN: Stoichiometric mixture of isooctane & air FIND: H per kmol of C8H18; hmix ; hmix ASSUMPTIONS: Air is comprised of 79% N2 and 21% O2 by volume; ideal gas APPROACH: We start by finding the stoichiometric proportions of each component: C8 H18 a(O2 3.76 N 2 ) products (Eqn.2.30) a=x+y/4=8+18/4=12.5 (Eqn.2.31) so, (1)C8 H 18 12.5O2 47 N 2 products as above is written for 1 kmol of C8H18; a) H (1)hC8 H18 12.5hO2 47hN2 ( J / kmolC8 H18 ) at 298 K, hisooctan e 224,109kJ / kmol (Evaluated from curve fit coefficients in table B.2) hO2 h f ,O2 0 o hN 2 h f , N 2 0 o H (1)( 224,109) 12.5(0) 47(0) 224,109( J / kmolC8 H18 ) b) hmix x h i i ; xi N i / N to t i xC8 H18 1 /(1 12.5 47) 0.0165 xO2 12.5 /(1 12.5 47) 0.2066 x N 2 47 /(1 12.5 47) 0.7769 hmix 0.0165(224,109) 0.2066(0) 0.7769(0) 3700kJ / kmol mix c) hmix Y h i i hmix / MWmix i MWmix xi MWi 0.0165(114.23) 0.2066(31.999) 0.7769(28.014) 30.260 hmix 3698 122.2kJ / kg mix 30.260 COMMENTS: We note that although both n-octane and isooctane are represented as C8H18, They have different molecular structures as discussed in the Chapter 2 appendix. Because of these structural differences, the enthalpy-of-formations of the two compounds have different values. o Table B.2 was used to calculate h f for isooctane as the value given in table B.1 is for n-octane. Spread-sheet software simplifies calculating properties from the table B.2 curve fit coefficients. Atp2-15 GIVEN: Isooctane-air, Φ=1, T=500 K FIND: H(per kmol C3H8), hmix , hmix ASSUMPTIONS: Air is 79% N2 and 21% O2; ideal gas APPROACH: We need only evaluate the enthalpies of the constituents at 500K and then follow the solution to prob.2-14. Isooctane O2 N2 hf hs @ 500 K h (500 K ) 0 0 _ 6097 5920 -175,807 6097 5920 Table B.2* Table A.11 Table A.11 *Evaluated using spread sheet software a) H 1(-175,807) 12.5(6097) 47(5920) 178,646 kJ/kmole b) hmix C8 H18 H 178,646 2953kJ / kmol mix N mix 1 12.5 47 c) hmix hmix / MWmix 2953 97.59kJ / kg mix 30.260 COMMENTS: Note that use of Table B.2 in combustion with A.7 and A.11 Atp2-16 GIVEN: Isooctane-air, Φ=0.7, T=500 K FIND: H(per kmol C3H8), hmix , hmix ASSUMPTIONS: see prob. 2-14 APPROACH: After calculating the properties of the constituents for 0.7 ,we follow the same solution as for prob.2-17. (1)C8 H 18 12.5 (O2 3.76 N 2 ) products C8H18 O2 N2 N x 1 17.86 67.14 0.0116 0.2077 0.7807 h (500 K ) * -175,807 6097 5920 *see Prob.2-15 N i 86.00 a) H=1(-175,807)+17.86(6097)+67.14(5920)=+330,554 kJ (for 1kmol C8H18) b) hmix H 330,554 3844kJ / kmol mix N mix 86 c) MWmix hmix x MW i i 0.0116(114.230) 0.2077(31.999) 0.7807(28.014) 29.842 hmix 3844 128.8kJ / kg mix MWmix 29.842 COMMENTS: Note how for non-stoichiometric combustion “ a / ” is substituted for “a” in Eqn.2.30. As expected, the mixture enthalpy increases with the addition of excess air. Atp2-23 GIVEN: The lower heating value for methane, LHV=50,016 kJ/kg@298K FIND: The enthalpy of formation of methane at 298 K ASSUMPTIONS: complete combustion of methane to form CO2, H2O and N2 APPROACH: Use the stoichiometric relation to determine the proper A/F ratio and combustion products for 1 kmole of methane. Then use the first law of thermodynamics to evaluate the reactant enthalpy. Q=LHV Stoichiometric relation CH 4 aO2 3.76aN 2 CO2 2H 2O 3.76aN 2 HR,298 a=x+y/4=2 Based on First Law analysis of control volume (CV) at steady-state CV HP,298 H R , 298 H P , 298 LHV 298 H P, 298 1[h f , 298 (h h f , 298 )]CO2 2[h f , 298 (h h f , 298 )] H 2O 7.52[h f , 298 (h h f , 298 )] N 2 o o o o o o using appendix A-T=298 K H P , 298 1[393546 0] 2[241847 0] 7.52[0 0] 877240kJ H R, 298 1[h f , 298 (h h f , 298 )]CH 4 2[h f , 298 (h h f , 298 )]O2 7.52[h f , 298 (h h f , 298 )] N 2 o again using appendix A-T=298 K o o o o o H R, 298 1[h f , 298 0]CH 4 2[241847 0] 7.52[0 0] 1[h f , 298 ]CH 4 o o H R 1[h f , 298 ]CH 4 H P , 298 LHV 298 877240kJ 50,016kJ / kg( o 16kg )(1kmole) kmole [h f , 298 ]CH 4 76984kJ / kmole o Atp2-24 GIVEN: The mixture composition in problem 2-2 at T=1000 K FIND: the absolute enthalpy of the mixture(kJ/kmol-mix) APPROACH: Detremine the absolute enthalpy of each species in the mixture using appendix A and then calculate the mixture absolute enthalpy from: hmix xi hi mixture composition (from prob. 2-2) and species enthalpies (appendix A) Species #Moles x CO 0.095 CO2 h f , 298 (kJ / kmol) (h1000 h f , 298 )( kJ / kmole) 0.002 -110541 21697 6 0.127 -393546 33425 H2O 7 0.149 -241847 25993 N2 34 0.722 0 21468 0.005 106ּ10-6 90297 22241 NO o o hmix xi hi ( xi hi ) CO ( xi hi ) CO2 ( xi hi ) H 2O ( xi hi ) N2 ( xi hi ) NO h i [h f , 298 (h1000 h f , 298 )]i o o hmix 0.002[110541 21697] 0.127[393546 33425] 0.149[241847 225993] 0.722[0 21468] 106 10 6 [90297 22241] 62563kJ / kmole COMMENTS: Note how much the N2 contributes to the mixture specific enthalpy (15500kJ/kmol-mix) despite having a relatively small absolute enthalpy itself (21468 kJ/kmole-N2). This is due to the large mole fraction of N2 present in the mixture. Atp2-30 GIVEN: A stoichiometric propane (C3H8)-air mixture at 298 K FIND: The adiabatic flame temperature, Tad ASSUMPTIONS: no dissociation, constant specific heats evaluated at 298 K APPROACH: Use element conservation to determine the correct fuel-air mixture and product composition. Then use a first law analysis to evaluate Tad Stoichiometric reaction: C3 H 8 aO2 3.76aN 2 3CO2 4H 2 O 3.76aN 2 at 1 , a x y / 4 5 HR T=298K CV HP T=Tad C3 H 8 5O2 18.8N 2 3CO2 4H 2 O 18.8N 2 Since the reactions are at T=298 K the O2 and N2 contributions to the reactant enthalpy are zero first law for adiabatic conditions: H R , 298 H P ,Tad [ Nh ]C3H8 [ Nh ]O2 [ Nh ] N2 [ Nh ]CO2 [ Nh ] H 2O [ Nh ] N2 where [ Nh ]O2 0 , [ Nh ] N 2 0 , hf o and c p properties from appendix A h h f , 298 (h h f , 298 ) h f c p (T 298) o o o (1)[ 103847 0]C3H8 3[393546 37.198(Tad 298)]CO2 4[241847 33.448(Tad 298)] H 2O 18.8[0 29.071(Tad 298)] N 2 solving for Tad: Tad=2879 K COMMENTS: Note that this flame temperature is much greater than the adiabatic flame temperature in appendix B.1. This is due to the assumption of no species dissociation and the assumption of constant specific heats evaluated at 298 K. An examination of appendix A shows that the specific heats can vary significantly from 298 K to 2879 K. Atp2-31 GIVEN: A stoichiometric propane (C3H8)-air mixture at 298 K FIND: The adiabatic flame temperature, Tad ASSUMPTIONS: no dissociation, constant specific heats evaluated at 2000 K APPROACH: Use element conservation to determine the correct fuel-air mixture and product composition. Then use a first law analysis to evaluate Tad Stoichiometric reaction: C3 H 8 aO2 3.76aN 2 3CO2 4H 2 O 3.76aN 2 HR at 1 , a x y / 4 5 C3 H 8 5O2 18.8N 2 3CO2 4H 2 O 18.8N 2 T=298K Since the reactions are at T=298 K the O2 and N2 contributions to the reactant enthalpy are zero first law for adiabatic conditions: H R , 298 H P ,Tad [ Nh ]C3H8 [ Nh ]O2 [ Nh ] N2 [ Nh ]CO2 [ Nh ] H 2O [ Nh ] N2 CV HP T=Tad where [ Nh ]O2 0 , [ Nh ] N 2 0 , hf o and c p properties from appendix A h h f , 298 (h h f , 298 ) h f c p (T 298) o o o (1)[ 103847 0]C3 H8 3[393546 60.433(Tad 298)]CO2 4[241847 51.143(Tad 298)] H 2O 18.8[0 35.9881(Tad 298)] N solving for Tad: Tad=2222 K COMMENTS: Note that this flame temperature is much closer to the value listed in appendix B.1 than the temperature calculated in prob.2-17. This is due to a more appropriate estimate of the constant specific heats. The effects of dissociation on the flame temperature are still unaccounted for. frAtp2-32 GIVEN: A stoichiometric propane (C3H8)-air mixture FIND: The adiabatic flame temperature, Tad ASSUMPTIONS: no dissociation, species thermophysical propertied equal to those listed in appendix A. APPROACH: Use element conservation to determine the correct fuel-air mixture and product composition. Then use appendix A to evaluate the species thermophysical peoperties and a first law analysis to evaluate Tad. This is an iterative process in which a flame temperature is guessed, the first law is checked, and if necessary a new flame temperature is chosen. See problems 2-17 and 2-18 for correct fuel-air misture and product composition. A control volume sketch for energy concentration is also shown. First law for adiabatic conditions: H R , 298 H P ,Tad → HP-HR=0 [ Nh ]C3H8 [ Nh ]O2 [ Nh ] N2 [ Nh ]CO2 [ Nh ] H 2O [ Nh ] N2 where [ Nh ]O2 0 , [ Nh ] N 2 0 , hf o and c p properties from appendix A h h f , 298 (h h f , 298 ) h f hS o o o values from appendix A (1)[ 103847 0]C3 H 8 3[393546 hS ]CO2 4[241847 hS ] H 2O 18.8[0 hS ] N 2 rearranging in form : HP-HR=0: 3hS ,CO2 4hS , H 2O 18.83hS , N2 2.0442 10 6 0 T(K) hS ,CO2 (kJ / kmol) hS ,CO2 (kJ / kmol) hS ,CO2 (kJ / kmol) HP-HR* 2000 91420 72805 56130 -423476 2100 97477 2200 103562 2300 109670 2400 115798 * Linear interpolation using HP-HR=0 77952 83160 88426 93744 59738 63360 66997 70645 -316887 -209706 -101942 6296 Tad=2394 K COMMENTS: Note that this flame temperature is slightly greater than that listed in appendix B.1 despite using accurate thermophysical properties form appendix A. This is due to neglecting species dissociation. Atp2-35 GIVEN: (C3H8)-air, 1 ,Ti=298, Pi =1 atm, constant-volume combustion FIND: Tad, Pfinal ASSUMPTIONS: no dissociation (given), constant c p ,i @298K, Air 21%O2 79%N 2 SOLUTION: Apply 1st law, Eqn.2.41: U R (Ti , Pi ) U Pr (Tad , Pf ) form Eqn.2.43, H R H Pr Ru ( N RTi N PrTad ) 0 to evaluate Eqn.2.43, we need the composition of both the reactants & products: C3 H 8 5(O2 3.76 N 2 ) 3CO2 4H 2 O 5(3.76) N 2 Reactant: C3H8 O2 N2 N h (h f ) Nh 1 5 18.8 -103,847 0 0 -103,847 0 0 o 24.8 kmol Table B.1 - -103,847 kJ R HR N i hi 103,847kJ R Products: N CO2 H2O N2 3 4 18.8 25.8 hf o -393,546 -241,845 0 o c p @ 298 K Nh f Nc p 37.198 33.448 29.071 -1,180,638 -967,380 0 111.594 133.742 546.535 -2,148,018 791.921 Table A.2 A.6 A.7 Pr H Pr N i hi N i [h f ,i c p ,i (Tad Tref )] Nih f ,i N i c p ,i (Tad Tref ) Pr 2,148,018 791.921(Tad Tref ) Substituting into Eqn.2.43 with Tref=Ti: H R H Pr Ru N R Ti Ru N PrTad 0 103,847 [2,148,018 791.921(Tad Ti )] 8.3145(24.8)298.15 8.3145(25.8)Tad 0 Simplifying: 2218804-577.407Tad=0 Tad=3843 K N R Ru Ti N Pr Ru Tad Pi Pf Pf 1atm Pf Pi N Pr Tad N r Ti 25.8 3843 13.4atm 24.8 298.15 COMMENTS: As expected, the constant volume adiabatic flame temperature is significantlt greater then the constant-P value of 2879 K from problem 2.30. Atp2-38 GIVEN: A /m F 18 , TA=800K (preheated), TF=450 K, P=1atm, hf,A=hf,Pr=0 A/ F m CP,F=3500 J/kg-K, cP,A=1200 J/kg-K, cP,Pr=1200J/kg-K, h f , F 1.16 10 J / kmole 9 FIND: Tad for P=1 atm ASSUMPTIONS: Air≡79%N2/21%O2; properties as given. SOLUTION: write 1st law (mass basis) recognizing that Pr m A m F m m A hA m F hF PrhPr m Q ,W 0 A hA m F hF (m A m F )hPr m F and substitue properties (hi=hf,i+cp,i(Ti-Tref)): Divided by m ( m A h m )(0 c P , A (TA Tref )) (1)[ F c P , F (TF Tref )] ( A 1)[0 c P ,Pr (Tad T ref )] m F MWF m F 1.16 10 9 18(1200(800 300)) ( 3500(450 300)) (18 1)(1200(Tad 300)) 29 solve for Tad: 1.080 10 7 4.0525 10 7 2.28 10 4 (Tad 300) Tad 2251 300 2551K COMMENTS: (1) Use of simplified properties focuses attention on energy conservation. (2) use of a mass-based 1st law simplifies the solution(HR=HPr) Atp2-42 GIVEN: A closed vessel containing 1 kmole of O2 when there is no dissociation. FIND: The mole fractions: xO and x O2 at the following conditions: a) T=2500 K, P=1 atm; b) T=2500 K, P=3 atm; ASSUMPTIONS: ideal gas, system is in chemical equilibrium APPROACH:There are two unknowns ( xO and x O2 ) so 2 equations must used. The first is the definition of Kp and the second is x i 1 O2 2O a) T=2500 K Gr 2[ Ng f ,T ]O [ Ng f ,T ]O2 2(88203) 0 176406kJ / kmole o o K p exp[ o G 176406 ] exp[ ] 206.3 10 6 Ru T 8.315(2500) 2 x P Kp O 206.3 10 6 xO2 Po x i 1st equation 1 xO xO2 xO2 1 xO 2nd equation substituting the 2nd equation into the 1st equation and rearranging yields: P 2 xO K P xO K P 0 Po quadratic equation K P K P 4( P / Po ) K P 2 solving for xO : x O 2( P / Po ) note: only “+” yields physically realistic result 6 T=2500K, P=1atm: Kp 206.3 10 , P / Po 1 → xO 0.0143 , xO2 1 xO 0.9857 6 T=2500K, P=3atm: Kp 206.3 10 , P / Po 3 → xO 0.00826 , xO2 1 xO 0.9917 COMMENTS: Note how this system follows the principle of Le Chatelier. Increasing the system pressure cause the system to shift towards more O2, thereby reducing the number of moles in the system ( N O N O2 )
© Copyright 2026 Paperzz