Identification and RQ-PCR monitoring of CML patients with rare variant BCR-ABL transcripts Chris Bowles West Midlands Regional Genetics Laboratory Chris Bowles WMRGL Chronic Myeloid Leukaemia • Chronic Myeloid Leukaemia is a stem cell cancer representing about 15-20% of adult leukaemia. • Chronic phase, which if left untreated will progress into an accelerated phase followed by blast crisis. • 750 new cases every year. ELN guidelines: patients monitored by RQ-PCR every 3 months. Normal CML Chris Bowles WMRGL Genetics of CML • 95% of cases have a common t(9;22)(q34;q11) chromosome translocation, resulting in an abnormally short chromosome 22 • Results in the fusion of two genes: – BCR on chromosome 22 – ABL on chromosome 9 • BCR-ABL fusion found in some ALL – different clinical course. Poor prognostic indicator • Fusion protein codes for a constitutively active tyrosine kinase. High level of successful treatment with drugs such as imatinib Chris Bowles WMRGL Genetics of CML • 98% of time exon 13 or 14 of BCR fuses with exon 2 of ABL (e13a2/e14a2) BCR Exon 13 ABL Exon 14 Exon 13 Exon 2 Exon 3 Exon 2 Exon 3 • Each patient has unique genomic breakpoint • Use RNA to allow streamlined monitoring Chris Bowles WMRGL Monitoring residual disease • RT-PCR – Endpoint monitoring to determine whether or not fusion gene is present – Can be influenced by quality of sample • RQ-PCR – Real Time Quantitative – Measure quantity of gene in exponential phase of PCR – Calculate ratio of BCR/ABL to housekeeping gene to remove variation of sample quality RT-PCR RQ-PCR Chris Bowles WMRGL Rare Variants • 2% of cases are result of a different BCR-ABL fusion • e6a2, e8a2, e13a3, e14a3, e19a2 • Can not be monitored by standard RQ-PCR system – Missing exons where RQ-PCR primers bind • Non quantitative RT-PCR only • No comparison between successive samples • No response data, no early warning of relapse/treatment failure Chris Bowles WMRGL Aims of project • Characterise rare variants at WMRGL – 9 CML & 1 ALL BCR-ABL rare variant patients – Sequence breakpoints & characterise gene fusions • Set up RQ monitoring for rare variants – Design new assays for monitoring MRD – Retrospective patient study Chris Bowles WMRGL RT-PCR ???? 243bp Marker Negative Patient 5 Patient 4 Patient 3 Patient 2 Patient 1 Control 168bp • 3 patients with 243bp band • 6 patients with 168bp band + extra band Chris Bowles WMRGL Sequencing of rare variants • Sequence 243bp sized band – e14a3 • Sequence 168bp sized band – e13a3 BCR exon 14 ABL exon 3 e14a3 BCR exon 13 ABL exon 3 e13a3 • Sequence additional bands – fusions of BCR intron 13 to ABL intron 2 BCR intron 13 ABL intron 2 Variation of fusion point between patients Chris Bowles WMRGL Origin of additional band • Genomic contamination of RNA extraction • Sequence genomic DNA stored on one patient • Looking at original genomic breakpoint for fusion gene • Why extra bands in e13a3 patients only? Chris Bowles WMRGL RQ-PCR design e13a2 e14a2 • Currently use primers located in BCR exon 13 and ABL exon 2 • Deletion of exon 2 prevents use with rare variant patients • ABL used as housekeeping gene • Use ABL primers and probes with original BCR/ABL forward primer Chris Bowles WMRGL Other rare variants • One additional rare variant – 290bp • Sequencing revealed truncated BCR exon 13 with insertion of 7 bases BCR exon 13 ABL exon 2 • Sequence genomic DNA • Extra bases from ABL intron at point of fusion in ABL intron 1 • Removal of RQ primer site – design new forward primer specific to this patient Chris Bowles WMRGL Validation • Normally ensure quantitative accuracy using plasmid DNA • PCR efficiency, different monitoring methods, diagnostic ratios 1. Comparison of PCR efficiency • Can determine PCR efficiency using RQ-PCR • Accurate high and low quantification • Similar for comparison between genes PCR Efficiency ABL = 93% PCR efficiency Rare variants = 90% PCR efficiency Chris Bowles WMRGL Validation 2. Comparison with other monitoring methods Patient A Cytogenetics RT-PCR RQ-PCR Patient B Cytogenetics RT-PCR RQ-PCR Diagnosis 100% M Not done Not done Diagnosis 100% M SS +ve 1.11376 3 months 0% M Not done Not done 3 months 84% M SS +ve 1.34918 6 months 11% M Failed 0.02308 6 months 0%wIF, 0%gIF SS +ve 0.00555 9 months 0% M SS +ve 0.00094 9 months Failed N+ve 0.00131 12 months Not done Negative 0 12 months Not done N +ve 0.00124 15 months Not done Negative 0 15 months Not done N +ve 0 18 months Not done Negative 0 18 months Not done N +ve 0 3. Comparison of diagnostic ratio values • Typical BCR/ABL fusion ratio are similar for all diagnosis samples Typical BCR/ABL patient diagnostic mean ratio 1.3 Rare variant BCR/ABL diagnostic mean ratio 1.4 Chris Bowles WMRGL Retrospective patient monitoring • Archive of patient RNA throughout disease • Test using new assay Patient A Patient B 10 Ratio on log scale 1 Ratio on log scale 0.1 1 0.1 0.01 0.01 0.001 0.001 0.0001 0.000001 0.00001 • • • • 01 /1 0/ 20 06 01 /0 1/ 20 07 01 /0 4/ 20 07 01 /0 7/ 20 07 01 /1 0/ 20 07 01 /0 1/ 20 08 01 /0 4/ 20 08 01 /0 7/ 20 08 01 /1 0/ 20 08 01 /0 1/ 20 09 01 /0 4/ 20 09 01 /0 7/ 20 09 01 /1 0/ 20 09 0.0001 01 /1 0 01 /20 /0 03 1 01 /20 /0 04 4 01 /20 /0 04 7 01 /20 /1 04 0 01 /20 /0 04 1 01 /20 /0 05 4 01 /20 /0 05 7 01 /20 /1 05 0 01 /20 /0 05 1 01 /20 /0 06 4 01 /20 /0 06 7 01 /20 /1 06 0 01 /20 /0 06 1 01 /20 /0 07 4 01 /20 /0 07 7 01 /20 /1 07 0 01 /20 /0 07 1 01 /20 /0 08 4 01 /20 /0 08 7 01 /20 /1 08 0 01 /20 /0 08 1 01 /20 /0 09 4 01 /20 /0 09 7 01 /20 /1 09 0/ 20 09 0.00001 6/9 CML patients had a major molecular response (>3 log reduction from diagnosis) 1/9 only recently diagnosed 1/9 No follow up data, presentation sample had high ratio (?blast crisis) BCR/ABL +ve ALL received BMT, with no response 0.000001 0.00001 Responsive patient • Patient treatment now changed to dasatinib 01 /0 9/ 20 09 0.0001 01 /0 6/ 20 09 0.00001 01 /0 3/ 20 09 0.0001 01 /1 2/ 20 08 0.001 01 /0 9/ 20 08 0.1 Ratio on log scale 01 /0 6/ 20 08 1 01 /0 3/ 20 08 Ratio on log scale 01 /1 2/ 20 07 Patient A 01 /0 9/ 20 07 01 /1 0 01 /20 /0 03 1 01 /20 /0 04 4 01 /20 /0 04 7 01 /20 /1 04 0 01 /20 /0 04 1 01 /20 /0 05 4 01 /20 /0 05 7 01 /20 /1 05 0 01 /20 /0 05 1 01 /20 /0 06 4 01 /20 /0 06 7 01 /20 /1 06 0 01 /20 /0 06 1 01 /20 /0 07 4 01 /20 /0 07 7 01 /20 /1 07 0 01 /20 /0 07 1 01 /20 /0 08 4 01 /20 /0 08 7 01 /20 /1 08 0 01 /20 /0 08 1 01 /20 /0 09 4 01 /20 /0 09 7 01 /20 /1 09 0/ 20 09 Chris Bowles WMRGL Response to imatinib • 1/9 RQ-PCR showed not responding to imatinib Patient E 10 1 0.01 0.1 0.01 0.001 Unresponsive patient • Previously unknown level of treatment response Chris Bowles WMRGL Conclusions • Characterised variants • Identified additional bands • Introduced RQ-PCR for rare variant CML patients • Effective clinical intervention • Patients with other rare variants treated on a case by case basis. Chris Bowles WMRGL Acknowledgments • • • • • Jo Mason Mike Griffiths Susanna Akiki Anna Yeung Sarah Whelton
© Copyright 2026 Paperzz